Optimal. Leaf size=28 \[ \frac {x^2}{\left (5-x+8 x \left (i \pi +\log \left (\frac {e}{4}\right )\right )^2\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.56, antiderivative size = 133, normalized size of antiderivative = 4.75, number of steps used = 4, number of rules used = 3, integrand size = 94, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6, 12, 2074} \begin {gather*} \frac {25}{\left (7-8 \pi ^2+8 \log ^2(4)+16 i \pi (1-\log (4))-16 \log (4)\right )^2 \left (5+x \left (7-8 \pi ^2+8 \log ^2(4)+16 i \pi (1-\log (4))-16 \log (4)\right )\right )^2}-\frac {10}{\left (7-8 \pi ^2+8 \log ^2(4)+16 i \pi (1-\log (4))-16 \log (4)\right )^2 \left (5+x \left (7-8 \pi ^2+8 \log ^2(4)+16 i \pi (1-\log (4))-16 \log (4)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x}{125-75 x+15 x^2+\left (600 x-240 x^2+24 x^3\right ) \left (i \pi +\log \left (\frac {e}{4}\right )\right )^2+\left (960 x^2-192 x^3\right ) \left (i \pi +\log \left (\frac {e}{4}\right )\right )^4+x^3 \left (-1+512 \left (i \pi +\log \left (\frac {e}{4}\right )\right )^6\right )} \, dx\\ &=10 \int \frac {x}{125-75 x+15 x^2+\left (600 x-240 x^2+24 x^3\right ) \left (i \pi +\log \left (\frac {e}{4}\right )\right )^2+\left (960 x^2-192 x^3\right ) \left (i \pi +\log \left (\frac {e}{4}\right )\right )^4+x^3 \left (-1+512 \left (i \pi +\log \left (\frac {e}{4}\right )\right )^6\right )} \, dx\\ &=10 \int \left (\frac {5}{\left (-7+8 \pi ^2-16 i \pi (1-\log (4))+16 \log (4)-8 \log ^2(4)\right ) \left (5+x \left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right )\right )^3}+\frac {1}{\left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right ) \left (5+x \left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right )\right )^2}\right ) \, dx\\ &=\frac {25}{\left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right )^2 \left (5+x \left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right )\right )^2}-\frac {10}{\left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right )^2 \left (5+x \left (7-8 \pi ^2+16 i \pi (1-\log (4))-16 \log (4)+8 \log ^2(4)\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 93, normalized size = 3.32 \begin {gather*} -\frac {5 \left (5-2 x \left (-7+8 \pi ^2+16 i \pi (-1+\log (4))+16 \log (4)-8 \log ^2(4)\right )\right )}{\left (-7+8 \pi ^2+16 i \pi (-1+\log (4))+16 \log (4)-8 \log ^2(4)\right )^2 \left (-5+x \left (-7+8 \pi ^2+16 i \pi (-1+\log (4))+16 \log (4)-8 \log ^2(4)\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.57, size = 199, normalized size = 7.11 \begin {gather*} -\frac {5 \, {\left (16 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{2} x - 32 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )} x + 14 \, x + 5\right )}}{4096 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{8} x^{2} - 32768 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{7} x^{2} + 5120 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{6} {\left (22 \, x^{2} + x\right )} - 2048 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{5} {\left (106 \, x^{2} + 15 \, x\right )} + 64 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{4} {\left (4006 \, x^{2} + 1170 \, x + 25\right )} - 256 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{3} {\left (742 \, x^{2} + 370 \, x + 25\right )} + 80 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )}^{2} {\left (1078 \, x^{2} + 819 \, x + 115\right )} - 224 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )} {\left (98 \, x^{2} + 105 \, x + 25\right )} + 2401 \, x^{2} + 3430 \, x + 1225} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 56, normalized size = 2.00 \begin {gather*} -\frac {5 \, {\left (16 \, x \log \left (-\frac {1}{4} \, e\right )^{2} - 2 \, x + 5\right )}}{{\left (64 \, \log \left (-\frac {1}{4} \, e\right )^{4} - 16 \, \log \left (-\frac {1}{4} \, e\right )^{2} + 1\right )} {\left (8 \, x \log \left (-\frac {1}{4} \, e\right )^{2} - x + 5\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.34, size = 66, normalized size = 2.36
method | result | size |
default | \(-\frac {10}{\left (8 \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}-1\right )^{2} \left (8 x \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}+5-x \right )}+\frac {25}{\left (8 \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}-1\right )^{2} \left (8 x \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}+5-x \right )^{2}}\) | \(66\) |
gosper | \(-\frac {5 \left (16 x \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}-2 x +5\right )}{\left (64 \ln \left (-\frac {{\mathrm e}}{4}\right )^{4} x^{2}-16 \ln \left (-\frac {{\mathrm e}}{4}\right )^{2} x^{2}+80 x \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}+x^{2}-10 x +25\right ) \left (8 \ln \left (-\frac {{\mathrm e}}{4}\right )^{2}-1\right )^{2}}\) | \(75\) |
risch | \(\frac {\frac {10 x}{-448+2048 \ln \relax (2)-1024 i \pi -2048 \ln \relax (2)^{2}+2048 i \ln \relax (2) \pi +512 \pi ^{2}}-\frac {25}{64 \left (-7+32 \ln \relax (2)-16 i \pi -32 \ln \relax (2)^{2}+32 i \ln \relax (2) \pi +8 \pi ^{2}\right )^{2}}}{-5 i \pi \ln \relax (2) x +\frac {5 i \pi x}{2}+\pi ^{4} x^{2}-23 i \pi \ln \relax (2) x^{2}-24 \pi ^{2} \ln \relax (2)^{2} x^{2}-32 i \pi \ln \relax (2)^{3} x^{2}+16 x^{2} \ln \relax (2)^{4}+24 \pi ^{2} \ln \relax (2) x^{2}+48 i \pi \ln \relax (2)^{2} x^{2}-32 x^{2} \ln \relax (2)^{3}-\frac {23 \pi ^{2} x^{2}}{4}+\frac {7 i \pi \,x^{2}}{2}+8 i \pi ^{3} \ln \relax (2) x^{2}+23 x^{2} \ln \relax (2)^{2}-\frac {5 x \,\pi ^{2}}{4}-4 i \pi ^{3} x^{2}+5 x \ln \relax (2)^{2}-7 x^{2} \ln \relax (2)-5 x \ln \relax (2)+\frac {49 x^{2}}{64}+\frac {35 x}{32}+\frac {25}{64}}\) | \(238\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 114, normalized size = 4.07 \begin {gather*} -\frac {5 \, {\left (2 \, {\left (8 \, \log \left (-\frac {1}{4} \, e\right )^{2} - 1\right )} x + 5\right )}}{1600 \, \log \left (-\frac {1}{4} \, e\right )^{4} + {\left (4096 \, \log \left (-\frac {1}{4} \, e\right )^{8} - 2048 \, \log \left (-\frac {1}{4} \, e\right )^{6} + 384 \, \log \left (-\frac {1}{4} \, e\right )^{4} - 32 \, \log \left (-\frac {1}{4} \, e\right )^{2} + 1\right )} x^{2} + 10 \, {\left (512 \, \log \left (-\frac {1}{4} \, e\right )^{6} - 192 \, \log \left (-\frac {1}{4} \, e\right )^{4} + 24 \, \log \left (-\frac {1}{4} \, e\right )^{2} - 1\right )} x - 400 \, \log \left (-\frac {1}{4} \, e\right )^{2} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 47, normalized size = 1.68 \begin {gather*} -\frac {5\,\left (16\,x\,{\ln \left (-\frac {\mathrm {e}}{4}\right )}^2-2\,x+5\right )}{{\left (8\,{\ln \left (-\frac {\mathrm {e}}{4}\right )}^2-1\right )}^2\,{\left (8\,x\,{\ln \left (-\frac {\mathrm {e}}{4}\right )}^2-x+5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 9.05, size = 765, normalized size = 27.32 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________