Optimal. Leaf size=25 \[ \frac {1}{6} \log ^2(5) \left (\log (x)+4 x \left (1+\frac {x}{\log (\log (x))}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^4 \log ^2(5)+\left (-16 x^3 \log ^2(5)+\left (-4 x^2+32 x^4\right ) \log ^2(5) \log (x)\right ) \log (\log (x))+\left (\left (4 x^2+48 x^3\right ) \log ^2(5) \log (x)+8 x^2 \log ^2(5) \log ^2(x)\right ) \log ^2(\log (x))+\left (\left (4 x+16 x^2\right ) \log ^2(5) \log (x)+(1+4 x) \log ^2(5) \log ^2(x)\right ) \log ^3(\log (x))}{3 x \log (x) \log ^3(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-16 x^4 \log ^2(5)+\left (-16 x^3 \log ^2(5)+\left (-4 x^2+32 x^4\right ) \log ^2(5) \log (x)\right ) \log (\log (x))+\left (\left (4 x^2+48 x^3\right ) \log ^2(5) \log (x)+8 x^2 \log ^2(5) \log ^2(x)\right ) \log ^2(\log (x))+\left (\left (4 x+16 x^2\right ) \log ^2(5) \log (x)+(1+4 x) \log ^2(5) \log ^2(x)\right ) \log ^3(\log (x))}{x \log (x) \log ^3(\log (x))} \, dx\\ &=\frac {1}{3} \int \frac {\log ^2(5) \left (-16 x^4+4 x^2 \left (-4 x+\left (-1+8 x^2\right ) \log (x)\right ) \log (\log (x))+4 x^2 \log (x) (1+12 x+2 \log (x)) \log ^2(\log (x))+(1+4 x) \log (x) (4 x+\log (x)) \log ^3(\log (x))\right )}{x \log (x) \log ^3(\log (x))} \, dx\\ &=\frac {1}{3} \log ^2(5) \int \frac {-16 x^4+4 x^2 \left (-4 x+\left (-1+8 x^2\right ) \log (x)\right ) \log (\log (x))+4 x^2 \log (x) (1+12 x+2 \log (x)) \log ^2(\log (x))+(1+4 x) \log (x) (4 x+\log (x)) \log ^3(\log (x))}{x \log (x) \log ^3(\log (x))} \, dx\\ &=\frac {1}{3} \log ^2(5) \int \left (\frac {(1+4 x) (4 x+\log (x))}{x}-\frac {16 x^3}{\log (x) \log ^3(\log (x))}+\frac {4 x \left (-4 x-\log (x)+8 x^2 \log (x)\right )}{\log (x) \log ^2(\log (x))}+\frac {4 x (1+12 x+2 \log (x))}{\log (\log (x))}\right ) \, dx\\ &=\frac {1}{3} \log ^2(5) \int \frac {(1+4 x) (4 x+\log (x))}{x} \, dx+\frac {1}{3} \left (4 \log ^2(5)\right ) \int \frac {x \left (-4 x-\log (x)+8 x^2 \log (x)\right )}{\log (x) \log ^2(\log (x))} \, dx+\frac {1}{3} \left (4 \log ^2(5)\right ) \int \frac {x (1+12 x+2 \log (x))}{\log (\log (x))} \, dx-\frac {1}{3} \left (16 \log ^2(5)\right ) \int \frac {x^3}{\log (x) \log ^3(\log (x))} \, dx\\ &=\frac {1}{6} \log ^2(5) (4 x+\log (x))^2+\frac {1}{3} \left (4 \log ^2(5)\right ) \int \left (-\frac {x}{\log ^2(\log (x))}+\frac {8 x^3}{\log ^2(\log (x))}-\frac {4 x^2}{\log (x) \log ^2(\log (x))}\right ) \, dx+\frac {1}{3} \left (4 \log ^2(5)\right ) \int \left (\frac {x}{\log (\log (x))}+\frac {12 x^2}{\log (\log (x))}+\frac {2 x \log (x)}{\log (\log (x))}\right ) \, dx-\frac {1}{3} \left (16 \log ^2(5)\right ) \int \frac {x^3}{\log (x) \log ^3(\log (x))} \, dx\\ &=\frac {1}{6} \log ^2(5) (4 x+\log (x))^2-\frac {1}{3} \left (4 \log ^2(5)\right ) \int \frac {x}{\log ^2(\log (x))} \, dx+\frac {1}{3} \left (4 \log ^2(5)\right ) \int \frac {x}{\log (\log (x))} \, dx+\frac {1}{3} \left (8 \log ^2(5)\right ) \int \frac {x \log (x)}{\log (\log (x))} \, dx-\frac {1}{3} \left (16 \log ^2(5)\right ) \int \frac {x^3}{\log (x) \log ^3(\log (x))} \, dx-\frac {1}{3} \left (16 \log ^2(5)\right ) \int \frac {x^2}{\log (x) \log ^2(\log (x))} \, dx+\frac {1}{3} \left (32 \log ^2(5)\right ) \int \frac {x^3}{\log ^2(\log (x))} \, dx+\left (16 \log ^2(5)\right ) \int \frac {x^2}{\log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 31, normalized size = 1.24 \begin {gather*} \frac {\log ^2(5) \left (4 x^2+(4 x+\log (x)) \log (\log (x))\right )^2}{6 \log ^2(\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 76, normalized size = 3.04 \begin {gather*} \frac {16 \, x^{4} \log \relax (5)^{2} + {\left (16 \, x^{2} \log \relax (5)^{2} + 8 \, x \log \relax (5)^{2} \log \relax (x) + \log \relax (5)^{2} \log \relax (x)^{2}\right )} \log \left (\log \relax (x)\right )^{2} + 8 \, {\left (4 \, x^{3} \log \relax (5)^{2} + x^{2} \log \relax (5)^{2} \log \relax (x)\right )} \log \left (\log \relax (x)\right )}{6 \, \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 71, normalized size = 2.84 \begin {gather*} \frac {8}{3} \, x^{2} \log \relax (5)^{2} + \frac {4}{3} \, x \log \relax (5)^{2} \log \relax (x) + \frac {1}{6} \, \log \relax (5)^{2} \log \relax (x)^{2} + \frac {4 \, {\left (2 \, x^{4} \log \relax (5)^{2} + 4 \, x^{3} \log \relax (5)^{2} \log \left (\log \relax (x)\right ) + x^{2} \log \relax (5)^{2} \log \relax (x) \log \left (\log \relax (x)\right )\right )}}{3 \, \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 62, normalized size = 2.48
method | result | size |
risch | \(\frac {\ln \relax (x )^{2} \ln \relax (5)^{2}}{6}+\frac {4 x \ln \relax (5)^{2} \ln \relax (x )}{3}+\frac {8 x^{2} \ln \relax (5)^{2}}{3}+\frac {4 x^{2} \ln \relax (5)^{2} \left (2 x^{2}+4 x \ln \left (\ln \relax (x )\right )+\ln \relax (x ) \ln \left (\ln \relax (x )\right )\right )}{3 \ln \left (\ln \relax (x )\right )^{2}}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 82, normalized size = 3.28 \begin {gather*} \frac {8}{3} \, x^{2} \log \relax (5)^{2} + \frac {1}{6} \, \log \relax (5)^{2} \log \relax (x)^{2} + \frac {4}{3} \, {\left (x \log \relax (x) - x\right )} \log \relax (5)^{2} + \frac {4}{3} \, x \log \relax (5)^{2} + \frac {4 \, {\left (2 \, x^{4} \log \relax (5)^{2} + {\left (4 \, x^{3} \log \relax (5)^{2} + x^{2} \log \relax (5)^{2} \log \relax (x)\right )} \log \left (\log \relax (x)\right )\right )}}{3 \, \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.03, size = 73, normalized size = 2.92 \begin {gather*} \frac {8\,x^2\,{\ln \relax (5)}^2}{3}+\frac {{\ln \relax (5)}^2\,{\ln \relax (x)}^2}{6}+\frac {4\,x\,{\ln \relax (5)}^2\,\ln \relax (x)}{3}+\frac {16\,x^3\,{\ln \relax (5)}^2}{3\,\ln \left (\ln \relax (x)\right )}+\frac {8\,x^4\,{\ln \relax (5)}^2}{3\,{\ln \left (\ln \relax (x)\right )}^2}+\frac {4\,x^2\,{\ln \relax (5)}^2\,\ln \relax (x)}{3\,\ln \left (\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 83, normalized size = 3.32 \begin {gather*} \frac {8 x^{2} \log {\relax (5 )}^{2}}{3} + \frac {4 x \log {\relax (5 )}^{2} \log {\relax (x )}}{3} + \frac {8 x^{4} \log {\relax (5 )}^{2} + \left (16 x^{3} \log {\relax (5 )}^{2} + 4 x^{2} \log {\relax (5 )}^{2} \log {\relax (x )}\right ) \log {\left (\log {\relax (x )} \right )}}{3 \log {\left (\log {\relax (x )} \right )}^{2}} + \frac {\log {\relax (5 )}^{2} \log {\relax (x )}^{2}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________