3.89.10 16x4log2(5)+(16x3log2(5)+(4x2+32x4)log2(5)log(x))log(log(x))+((4x2+48x3)log2(5)log(x)+8x2log2(5)log2(x))log2(log(x))+((4x+16x2)log2(5)log(x)+(1+4x)log2(5)log2(x))log3(log(x))3xlog(x)log3(log(x))dx

Optimal. Leaf size=25 16log2(5)(log(x)+4x(1+xlog(log(x))))2

________________________________________________________________________________________

Rubi [F]  time = 1.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 16x4log2(5)+(16x3log2(5)+(4x2+32x4)log2(5)log(x))log(log(x))+((4x2+48x3)log2(5)log(x)+8x2log2(5)log2(x))log2(log(x))+((4x+16x2)log2(5)log(x)+(1+4x)log2(5)log2(x))log3(log(x))3xlog(x)log3(log(x))dx

Verification is not applicable to the result.

[In]

Int[(-16*x^4*Log[5]^2 + (-16*x^3*Log[5]^2 + (-4*x^2 + 32*x^4)*Log[5]^2*Log[x])*Log[Log[x]] + ((4*x^2 + 48*x^3)
*Log[5]^2*Log[x] + 8*x^2*Log[5]^2*Log[x]^2)*Log[Log[x]]^2 + ((4*x + 16*x^2)*Log[5]^2*Log[x] + (1 + 4*x)*Log[5]
^2*Log[x]^2)*Log[Log[x]]^3)/(3*x*Log[x]*Log[Log[x]]^3),x]

[Out]

(Log[5]^2*(4*x + Log[x])^2)/6 - (16*Log[5]^2*Defer[Int][x^3/(Log[x]*Log[Log[x]]^3), x])/3 - (4*Log[5]^2*Defer[
Int][x/Log[Log[x]]^2, x])/3 + (32*Log[5]^2*Defer[Int][x^3/Log[Log[x]]^2, x])/3 - (16*Log[5]^2*Defer[Int][x^2/(
Log[x]*Log[Log[x]]^2), x])/3 + (4*Log[5]^2*Defer[Int][x/Log[Log[x]], x])/3 + 16*Log[5]^2*Defer[Int][x^2/Log[Lo
g[x]], x] + (8*Log[5]^2*Defer[Int][(x*Log[x])/Log[Log[x]], x])/3

Rubi steps

integral=1316x4log2(5)+(16x3log2(5)+(4x2+32x4)log2(5)log(x))log(log(x))+((4x2+48x3)log2(5)log(x)+8x2log2(5)log2(x))log2(log(x))+((4x+16x2)log2(5)log(x)+(1+4x)log2(5)log2(x))log3(log(x))xlog(x)log3(log(x))dx=13log2(5)(16x4+4x2(4x+(1+8x2)log(x))log(log(x))+4x2log(x)(1+12x+2log(x))log2(log(x))+(1+4x)log(x)(4x+log(x))log3(log(x)))xlog(x)log3(log(x))dx=13log2(5)16x4+4x2(4x+(1+8x2)log(x))log(log(x))+4x2log(x)(1+12x+2log(x))log2(log(x))+(1+4x)log(x)(4x+log(x))log3(log(x))xlog(x)log3(log(x))dx=13log2(5)((1+4x)(4x+log(x))x16x3log(x)log3(log(x))+4x(4xlog(x)+8x2log(x))log(x)log2(log(x))+4x(1+12x+2log(x))log(log(x)))dx=13log2(5)(1+4x)(4x+log(x))xdx+13(4log2(5))x(4xlog(x)+8x2log(x))log(x)log2(log(x))dx+13(4log2(5))x(1+12x+2log(x))log(log(x))dx13(16log2(5))x3log(x)log3(log(x))dx=16log2(5)(4x+log(x))2+13(4log2(5))(xlog2(log(x))+8x3log2(log(x))4x2log(x)log2(log(x)))dx+13(4log2(5))(xlog(log(x))+12x2log(log(x))+2xlog(x)log(log(x)))dx13(16log2(5))x3log(x)log3(log(x))dx=16log2(5)(4x+log(x))213(4log2(5))xlog2(log(x))dx+13(4log2(5))xlog(log(x))dx+13(8log2(5))xlog(x)log(log(x))dx13(16log2(5))x3log(x)log3(log(x))dx13(16log2(5))x2log(x)log2(log(x))dx+13(32log2(5))x3log2(log(x))dx+(16log2(5))x2log(log(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 31, normalized size = 1.24 log2(5)(4x2+(4x+log(x))log(log(x)))26log2(log(x))

Antiderivative was successfully verified.

[In]

Integrate[(-16*x^4*Log[5]^2 + (-16*x^3*Log[5]^2 + (-4*x^2 + 32*x^4)*Log[5]^2*Log[x])*Log[Log[x]] + ((4*x^2 + 4
8*x^3)*Log[5]^2*Log[x] + 8*x^2*Log[5]^2*Log[x]^2)*Log[Log[x]]^2 + ((4*x + 16*x^2)*Log[5]^2*Log[x] + (1 + 4*x)*
Log[5]^2*Log[x]^2)*Log[Log[x]]^3)/(3*x*Log[x]*Log[Log[x]]^3),x]

[Out]

(Log[5]^2*(4*x^2 + (4*x + Log[x])*Log[Log[x]])^2)/(6*Log[Log[x]]^2)

________________________________________________________________________________________

fricas [B]  time = 0.69, size = 76, normalized size = 3.04 16x4log(5)2+(16x2log(5)2+8xlog(5)2log(x)+log(5)2log(x)2)log(log(x))2+8(4x3log(5)2+x2log(5)2log(x))log(log(x))6log(log(x))2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(((4*x+1)*log(5)^2*log(x)^2+(16*x^2+4*x)*log(5)^2*log(x))*log(log(x))^3+(8*x^2*log(5)^2*log(x)^2
+(48*x^3+4*x^2)*log(5)^2*log(x))*log(log(x))^2+((32*x^4-4*x^2)*log(5)^2*log(x)-16*x^3*log(5)^2)*log(log(x))-16
*x^4*log(5)^2)/x/log(x)/log(log(x))^3,x, algorithm="fricas")

[Out]

1/6*(16*x^4*log(5)^2 + (16*x^2*log(5)^2 + 8*x*log(5)^2*log(x) + log(5)^2*log(x)^2)*log(log(x))^2 + 8*(4*x^3*lo
g(5)^2 + x^2*log(5)^2*log(x))*log(log(x)))/log(log(x))^2

________________________________________________________________________________________

giac [B]  time = 0.26, size = 71, normalized size = 2.84 83x2log(5)2+43xlog(5)2log(x)+16log(5)2log(x)2+4(2x4log(5)2+4x3log(5)2log(log(x))+x2log(5)2log(x)log(log(x)))3log(log(x))2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(((4*x+1)*log(5)^2*log(x)^2+(16*x^2+4*x)*log(5)^2*log(x))*log(log(x))^3+(8*x^2*log(5)^2*log(x)^2
+(48*x^3+4*x^2)*log(5)^2*log(x))*log(log(x))^2+((32*x^4-4*x^2)*log(5)^2*log(x)-16*x^3*log(5)^2)*log(log(x))-16
*x^4*log(5)^2)/x/log(x)/log(log(x))^3,x, algorithm="giac")

[Out]

8/3*x^2*log(5)^2 + 4/3*x*log(5)^2*log(x) + 1/6*log(5)^2*log(x)^2 + 4/3*(2*x^4*log(5)^2 + 4*x^3*log(5)^2*log(lo
g(x)) + x^2*log(5)^2*log(x)*log(log(x)))/log(log(x))^2

________________________________________________________________________________________

maple [B]  time = 0.06, size = 62, normalized size = 2.48




method result size



risch ln(x)2ln(5)26+4xln(5)2ln(x)3+8x2ln(5)23+4x2ln(5)2(2x2+4xln(ln(x))+ln(x)ln(ln(x)))3ln(ln(x))2 62



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*(((4*x+1)*ln(5)^2*ln(x)^2+(16*x^2+4*x)*ln(5)^2*ln(x))*ln(ln(x))^3+(8*x^2*ln(5)^2*ln(x)^2+(48*x^3+4*x^2
)*ln(5)^2*ln(x))*ln(ln(x))^2+((32*x^4-4*x^2)*ln(5)^2*ln(x)-16*x^3*ln(5)^2)*ln(ln(x))-16*x^4*ln(5)^2)/x/ln(x)/l
n(ln(x))^3,x,method=_RETURNVERBOSE)

[Out]

1/6*ln(x)^2*ln(5)^2+4/3*x*ln(5)^2*ln(x)+8/3*x^2*ln(5)^2+4/3*x^2*ln(5)^2*(2*x^2+4*x*ln(ln(x))+ln(x)*ln(ln(x)))/
ln(ln(x))^2

________________________________________________________________________________________

maxima [B]  time = 0.50, size = 82, normalized size = 3.28 83x2log(5)2+16log(5)2log(x)2+43(xlog(x)x)log(5)2+43xlog(5)2+4(2x4log(5)2+(4x3log(5)2+x2log(5)2log(x))log(log(x)))3log(log(x))2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(((4*x+1)*log(5)^2*log(x)^2+(16*x^2+4*x)*log(5)^2*log(x))*log(log(x))^3+(8*x^2*log(5)^2*log(x)^2
+(48*x^3+4*x^2)*log(5)^2*log(x))*log(log(x))^2+((32*x^4-4*x^2)*log(5)^2*log(x)-16*x^3*log(5)^2)*log(log(x))-16
*x^4*log(5)^2)/x/log(x)/log(log(x))^3,x, algorithm="maxima")

[Out]

8/3*x^2*log(5)^2 + 1/6*log(5)^2*log(x)^2 + 4/3*(x*log(x) - x)*log(5)^2 + 4/3*x*log(5)^2 + 4/3*(2*x^4*log(5)^2
+ (4*x^3*log(5)^2 + x^2*log(5)^2*log(x))*log(log(x)))/log(log(x))^2

________________________________________________________________________________________

mupad [B]  time = 6.03, size = 73, normalized size = 2.92 8x2ln(5)23+ln(5)2ln(x)26+4xln(5)2ln(x)3+16x3ln(5)23ln(ln(x))+8x4ln(5)23ln(ln(x))2+4x2ln(5)2ln(x)3ln(ln(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((16*x^4*log(5)^2)/3 - (log(log(x))^3*(log(5)^2*log(x)*(4*x + 16*x^2) + log(5)^2*log(x)^2*(4*x + 1)))/3 -
 (log(log(x))^2*(8*x^2*log(5)^2*log(x)^2 + log(5)^2*log(x)*(4*x^2 + 48*x^3)))/3 + (log(log(x))*(16*x^3*log(5)^
2 + log(5)^2*log(x)*(4*x^2 - 32*x^4)))/3)/(x*log(log(x))^3*log(x)),x)

[Out]

(8*x^2*log(5)^2)/3 + (log(5)^2*log(x)^2)/6 + (4*x*log(5)^2*log(x))/3 + (16*x^3*log(5)^2)/(3*log(log(x))) + (8*
x^4*log(5)^2)/(3*log(log(x))^2) + (4*x^2*log(5)^2*log(x))/(3*log(log(x)))

________________________________________________________________________________________

sympy [B]  time = 0.34, size = 83, normalized size = 3.32 8x2log(5)23+4xlog(5)2log(x)3+8x4log(5)2+(16x3log(5)2+4x2log(5)2log(x))log(log(x))3log(log(x))2+log(5)2log(x)26

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(((4*x+1)*ln(5)**2*ln(x)**2+(16*x**2+4*x)*ln(5)**2*ln(x))*ln(ln(x))**3+(8*x**2*ln(5)**2*ln(x)**2
+(48*x**3+4*x**2)*ln(5)**2*ln(x))*ln(ln(x))**2+((32*x**4-4*x**2)*ln(5)**2*ln(x)-16*x**3*ln(5)**2)*ln(ln(x))-16
*x**4*ln(5)**2)/x/ln(x)/ln(ln(x))**3,x)

[Out]

8*x**2*log(5)**2/3 + 4*x*log(5)**2*log(x)/3 + (8*x**4*log(5)**2 + (16*x**3*log(5)**2 + 4*x**2*log(5)**2*log(x)
)*log(log(x)))/(3*log(log(x))**2) + log(5)**2*log(x)**2/6

________________________________________________________________________________________