3.89.11
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [F] time = 22.12, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(3 + 7*x + 36*x^3 + 36*x^4 + (2 + 2*x - 24
*x^3 - 24*x^4)*Log[4 + 4*x] + (-1 - x + 4*x^3 + 4*x^4)*Log[4 + 4*x]^2))/(9 + 9*x + (-6 - 6*x)*Log[4 + 4*x] + (
1 + x)*Log[4 + 4*x]^2),x]
[Out]
-29*Defer[Int][E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))/(-3 + Log[4*(1 + x)])^2, x] - 4*
Defer[Int][E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))/((1 + x)*(-3 + Log[4*(1 + x)])^2), x
] + 108*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(1 + x))/(-3 + Log[4*(1 + x
)])^2, x] - 108*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(1 + x)^2)/(-3 + Lo
g[4*(1 + x)])^2, x] + 36*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(1 + x)^3)
/(-3 + Log[4*(1 + x)])^2, x] + 2*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*Lo
g[4 + 4*x])/(3 - Log[4*(1 + x)])^2, x] - 24*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4
+ 4*x]))*x^3*Log[4 + 4*x])/(3 - Log[4*(1 + x)])^2, x] - Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/
(-3 + Log[4 + 4*x]))*Log[4 + 4*x]^2)/(3 - Log[4*(1 + x)])^2, x] + 4*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Lo
g[4 + 4*x])/(-3 + Log[4 + 4*x]))*x^3*Log[4 + 4*x]^2)/(3 - Log[4*(1 + x)])^2, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 33, normalized size = 1.50
Antiderivative was successfully verified.
[In]
Integrate[(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(3 + 7*x + 36*x^3 + 36*x^4 + (2 + 2*
x - 24*x^3 - 24*x^4)*Log[4 + 4*x] + (-1 - x + 4*x^3 + 4*x^4)*Log[4 + 4*x]^2))/(9 + 9*x + (-6 - 6*x)*Log[4 + 4*
x] + (1 + x)*Log[4 + 4*x]^2),x]
[Out]
E^((x*(-1 - 3*x^3 + (-1 + x^3)*Log[4*(1 + x)]))/(-3 + Log[4*(1 + x)]))
________________________________________________________________________________________
fricas [A] time = 0.55, size = 35, normalized size = 1.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^4+4*x^3-x-1)*log(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*log(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*
log(4*x+4)-3*x^4-x)/(log(4*x+4)-3))/((x+1)*log(4*x+4)^2+(-6*x-6)*log(4*x+4)+9*x+9),x, algorithm="fricas")
[Out]
e^(-(3*x^4 - (x^4 - x)*log(4*x + 4) + x)/(log(4*x + 4) - 3))
________________________________________________________________________________________
giac [B] time = 5.31, size = 69, normalized size = 3.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^4+4*x^3-x-1)*log(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*log(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*
log(4*x+4)-3*x^4-x)/(log(4*x+4)-3))/((x+1)*log(4*x+4)^2+(-6*x-6)*log(4*x+4)+9*x+9),x, algorithm="giac")
[Out]
e^(x^4*log(4*x + 4)/(log(4*x + 4) - 3) - 3*x^4/(log(4*x + 4) - 3) - x*log(4*x + 4)/(log(4*x + 4) - 3) - x/(log
(4*x + 4) - 3))
________________________________________________________________________________________
maple [A] time = 0.08, size = 39, normalized size = 1.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x^4+4*x^3-x-1)*ln(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*ln(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*ln(4*x+4
)-3*x^4-x)/(ln(4*x+4)-3))/((x+1)*ln(4*x+4)^2+(-6*x-6)*ln(4*x+4)+9*x+9),x,method=_RETURNVERBOSE)
[Out]
exp(x*(ln(4*x+4)*x^3-3*x^3-ln(4*x+4)-1)/(ln(4*x+4)-3))
________________________________________________________________________________________
maxima [B] time = 0.64, size = 109, normalized size = 4.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^4+4*x^3-x-1)*log(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*log(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*
log(4*x+4)-3*x^4-x)/(log(4*x+4)-3))/((x+1)*log(4*x+4)^2+(-6*x-6)*log(4*x+4)+9*x+9),x, algorithm="maxima")
[Out]
e^(2*x^4*log(2)/(2*log(2) + log(x + 1) - 3) + x^4*log(x + 1)/(2*log(2) + log(x + 1) - 3) - 3*x^4/(2*log(2) + l
og(x + 1) - 3) - 2*x*log(2)/(2*log(2) + log(x + 1) - 3) - x*log(x + 1)/(2*log(2) + log(x + 1) - 3) - x/(2*log(
2) + log(x + 1) - 3))
________________________________________________________________________________________
mupad [B] time = 5.99, size = 57, normalized size = 2.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-(x + log(4*x + 4)*(x - x^4) + 3*x^4)/(log(4*x + 4) - 3))*(7*x + log(4*x + 4)*(2*x - 24*x^3 - 24*x^4
+ 2) - log(4*x + 4)^2*(x - 4*x^3 - 4*x^4 + 1) + 36*x^3 + 36*x^4 + 3))/(9*x - log(4*x + 4)*(6*x + 6) + log(4*x
+ 4)^2*(x + 1) + 9),x)
[Out]
(exp(-x/(log(4*x + 4) - 3))*exp(-(3*x^4)/(log(4*x + 4) - 3)))/(4*x + 4)^((x - x^4)/(log(4*x + 4) - 3))
________________________________________________________________________________________
sympy [A] time = 0.66, size = 27, normalized size = 1.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x**4+4*x**3-x-1)*ln(4*x+4)**2+(-24*x**4-24*x**3+2*x+2)*ln(4*x+4)+36*x**4+36*x**3+7*x+3)*exp(((x*
*4-x)*ln(4*x+4)-3*x**4-x)/(ln(4*x+4)-3))/((x+1)*ln(4*x+4)**2+(-6*x-6)*ln(4*x+4)+9*x+9),x)
[Out]
exp((-3*x**4 - x + (x**4 - x)*log(4*x + 4))/(log(4*x + 4) - 3))
________________________________________________________________________________________