3.89.11 ex3x4+(x+x4)log(4+4x)3+log(4+4x)(3+7x+36x3+36x4+(2+2x24x324x4)log(4+4x)+(1x+4x3+4x4)log2(4+4x))9+9x+(66x)log(4+4x)+(1+x)log2(4+4x)dx

Optimal. Leaf size=22 ex+x44x3+log(4+4x)

________________________________________________________________________________________

Rubi [F]  time = 22.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+7x+36x3+36x4+(2+2x24x324x4)log(4+4x)+(1x+4x3+4x4)log2(4+4x))9+9x+(66x)log(4+4x)+(1+x)log2(4+4x)dx

Verification is not applicable to the result.

[In]

Int[(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(3 + 7*x + 36*x^3 + 36*x^4 + (2 + 2*x - 24
*x^3 - 24*x^4)*Log[4 + 4*x] + (-1 - x + 4*x^3 + 4*x^4)*Log[4 + 4*x]^2))/(9 + 9*x + (-6 - 6*x)*Log[4 + 4*x] + (
1 + x)*Log[4 + 4*x]^2),x]

[Out]

-29*Defer[Int][E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))/(-3 + Log[4*(1 + x)])^2, x] - 4*
Defer[Int][E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))/((1 + x)*(-3 + Log[4*(1 + x)])^2), x
] + 108*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(1 + x))/(-3 + Log[4*(1 + x
)])^2, x] - 108*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(1 + x)^2)/(-3 + Lo
g[4*(1 + x)])^2, x] + 36*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(1 + x)^3)
/(-3 + Log[4*(1 + x)])^2, x] + 2*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*Lo
g[4 + 4*x])/(3 - Log[4*(1 + x)])^2, x] - 24*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4
+ 4*x]))*x^3*Log[4 + 4*x])/(3 - Log[4*(1 + x)])^2, x] - Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/
(-3 + Log[4 + 4*x]))*Log[4 + 4*x]^2)/(3 - Log[4*(1 + x)])^2, x] + 4*Defer[Int][(E^((-x - 3*x^4 + (-x + x^4)*Lo
g[4 + 4*x])/(-3 + Log[4 + 4*x]))*x^3*Log[4 + 4*x]^2)/(3 - Log[4*(1 + x)])^2, x]

Rubi steps

integral=exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+7x+36x3+36x4+(2+2x24x324x4)log(4+4x)+(1x+4x3+4x4)log2(4+4x))(1+x)(3log(4(1+x)))2dx=(3exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2+7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x(1+x)(3+log(4(1+x)))2+36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3(1+x)(3+log(4(1+x)))2+36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x4(1+x)(3+log(4(1+x)))2+2exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(112x3)log(4+4x)(3log(4(1+x)))2+exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+4x3)log2(4+4x)(3log(4(1+x)))2)dx=2exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(112x3)log(4+4x)(3log(4(1+x)))2dx+3exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx+7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x(1+x)(3+log(4(1+x)))2dx+36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3(1+x)(3+log(4(1+x)))2dx+36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x4(1+x)(3+log(4(1+x)))2dx+exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+4x3)log2(4+4x)(3log(4(1+x)))2dx=2(ex3x4+(x+x4)log(4+4x)3+log(4+4x)log(4+4x)(3log(4(1+x)))212ex3x4+(x+x4)log(4+4x)3+log(4+4x)x3log(4+4x)(3log(4(1+x)))2)dx+3ex3x4+(x+x4)log(4+4x)3+log(4+4x)(1+x)(3+log(4(1+x)))2dx+7(ex3x4+(x+x4)log(4+4x)3+log(4+4x)(3+log(4(1+x)))2ex3x4+(x+x4)log(4+4x)3+log(4+4x)(1+x)(3+log(4(1+x)))2)dx+36(ex3x4+(x+x4)log(4+4x)3+log(4+4x)(3+log(4(1+x)))2ex3x4+(x+x4)log(4+4x)3+log(4+4x)x(3+log(4(1+x)))2+ex3x4+(x+x4)log(4+4x)3+log(4+4x)x2(3+log(4(1+x)))2ex3x4+(x+x4)log(4+4x)3+log(4+4x)(1+x)(3+log(4(1+x)))2)dx+36(ex3x4+(x+x4)log(4+4x)3+log(4+4x)(3+log(4(1+x)))2+ex3x4+(x+x4)log(4+4x)3+log(4+4x)x(3+log(4(1+x)))2ex3x4+(x+x4)log(4+4x)3+log(4+4x)x2(3+log(4(1+x)))2+ex3x4+(x+x4)log(4+4x)3+log(4+4x)x3(3+log(4(1+x)))2+ex3x4+(x+x4)log(4+4x)3+log(4+4x)(1+x)(3+log(4(1+x)))2)dx+(ex3x4+(x+x4)log(4+4x)3+log(4+4x)log2(4+4x)(3log(4(1+x)))2+4ex3x4+(x+x4)log(4+4x)3+log(4+4x)x3log2(4+4x)(3log(4(1+x)))2)dx=2exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))log(4+4x)(3log(4(1+x)))2dx+3exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx+4exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3log2(4+4x)(3log(4(1+x)))2dx+7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+log(4(1+x)))2dx7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx24exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3log(4+4x)(3log(4(1+x)))2dx+36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3(3+log(4(1+x)))2dxexp(x3x4+(x+x4)log(4+4x)3+log(4+4x))log2(4+4x)(3log(4(1+x)))2dx=2exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))log(4+4x)(3log(4(1+x)))2dx+3exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx+4exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3log2(4+4x)(3log(4(1+x)))2dx+7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+log(4(1+x)))2dx7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx24exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3log(4+4x)(3log(4(1+x)))2dx+36(exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+log(4(1+x)))2+3exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))23exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)2(3+log(4(1+x)))2+exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)3(3+log(4(1+x)))2)dxexp(x3x4+(x+x4)log(4+4x)3+log(4+4x))log2(4+4x)(3log(4(1+x)))2dx=2exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))log(4+4x)(3log(4(1+x)))2dx+3exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx+4exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3log2(4+4x)(3log(4(1+x)))2dx+7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+log(4(1+x)))2dx7exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx24exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))x3log(4+4x)(3log(4(1+x)))2dx36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(3+log(4(1+x)))2dx+36exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)3(3+log(4(1+x)))2dx+108exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)(3+log(4(1+x)))2dx108exp(x3x4+(x+x4)log(4+4x)3+log(4+4x))(1+x)2(3+log(4(1+x)))2dxexp(x3x4+(x+x4)log(4+4x)3+log(4+4x))log2(4+4x)(3log(4(1+x)))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 33, normalized size = 1.50 ex(13x3+(1+x3)log(4(1+x)))3+log(4(1+x))

Antiderivative was successfully verified.

[In]

Integrate[(E^((-x - 3*x^4 + (-x + x^4)*Log[4 + 4*x])/(-3 + Log[4 + 4*x]))*(3 + 7*x + 36*x^3 + 36*x^4 + (2 + 2*
x - 24*x^3 - 24*x^4)*Log[4 + 4*x] + (-1 - x + 4*x^3 + 4*x^4)*Log[4 + 4*x]^2))/(9 + 9*x + (-6 - 6*x)*Log[4 + 4*
x] + (1 + x)*Log[4 + 4*x]^2),x]

[Out]

E^((x*(-1 - 3*x^3 + (-1 + x^3)*Log[4*(1 + x)]))/(-3 + Log[4*(1 + x)]))

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 35, normalized size = 1.59 e(3x4(x4x)log(4x+4)+xlog(4x+4)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^4+4*x^3-x-1)*log(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*log(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*
log(4*x+4)-3*x^4-x)/(log(4*x+4)-3))/((x+1)*log(4*x+4)^2+(-6*x-6)*log(4*x+4)+9*x+9),x, algorithm="fricas")

[Out]

e^(-(3*x^4 - (x^4 - x)*log(4*x + 4) + x)/(log(4*x + 4) - 3))

________________________________________________________________________________________

giac [B]  time = 5.31, size = 69, normalized size = 3.14 e(x4log(4x+4)log(4x+4)33x4log(4x+4)3xlog(4x+4)log(4x+4)3xlog(4x+4)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^4+4*x^3-x-1)*log(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*log(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*
log(4*x+4)-3*x^4-x)/(log(4*x+4)-3))/((x+1)*log(4*x+4)^2+(-6*x-6)*log(4*x+4)+9*x+9),x, algorithm="giac")

[Out]

e^(x^4*log(4*x + 4)/(log(4*x + 4) - 3) - 3*x^4/(log(4*x + 4) - 3) - x*log(4*x + 4)/(log(4*x + 4) - 3) - x/(log
(4*x + 4) - 3))

________________________________________________________________________________________

maple [A]  time = 0.08, size = 39, normalized size = 1.77




method result size



risch ex(ln(4x+4)x33x3ln(4x+4)1)ln(4x+4)3 39



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x^4+4*x^3-x-1)*ln(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*ln(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*ln(4*x+4
)-3*x^4-x)/(ln(4*x+4)-3))/((x+1)*ln(4*x+4)^2+(-6*x-6)*ln(4*x+4)+9*x+9),x,method=_RETURNVERBOSE)

[Out]

exp(x*(ln(4*x+4)*x^3-3*x^3-ln(4*x+4)-1)/(ln(4*x+4)-3))

________________________________________________________________________________________

maxima [B]  time = 0.64, size = 109, normalized size = 4.95 e(2x4log(2)2log(2)+log(x+1)3+x4log(x+1)2log(2)+log(x+1)33x42log(2)+log(x+1)32xlog(2)2log(2)+log(x+1)3xlog(x+1)2log(2)+log(x+1)3x2log(2)+log(x+1)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^4+4*x^3-x-1)*log(4*x+4)^2+(-24*x^4-24*x^3+2*x+2)*log(4*x+4)+36*x^4+36*x^3+7*x+3)*exp(((x^4-x)*
log(4*x+4)-3*x^4-x)/(log(4*x+4)-3))/((x+1)*log(4*x+4)^2+(-6*x-6)*log(4*x+4)+9*x+9),x, algorithm="maxima")

[Out]

e^(2*x^4*log(2)/(2*log(2) + log(x + 1) - 3) + x^4*log(x + 1)/(2*log(2) + log(x + 1) - 3) - 3*x^4/(2*log(2) + l
og(x + 1) - 3) - 2*x*log(2)/(2*log(2) + log(x + 1) - 3) - x*log(x + 1)/(2*log(2) + log(x + 1) - 3) - x/(2*log(
2) + log(x + 1) - 3))

________________________________________________________________________________________

mupad [B]  time = 5.99, size = 57, normalized size = 2.59 exln(4x+4)3e3x4ln(4x+4)3(4x+4)xx4ln(4x+4)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(x + log(4*x + 4)*(x - x^4) + 3*x^4)/(log(4*x + 4) - 3))*(7*x + log(4*x + 4)*(2*x - 24*x^3 - 24*x^4
+ 2) - log(4*x + 4)^2*(x - 4*x^3 - 4*x^4 + 1) + 36*x^3 + 36*x^4 + 3))/(9*x - log(4*x + 4)*(6*x + 6) + log(4*x
+ 4)^2*(x + 1) + 9),x)

[Out]

(exp(-x/(log(4*x + 4) - 3))*exp(-(3*x^4)/(log(4*x + 4) - 3)))/(4*x + 4)^((x - x^4)/(log(4*x + 4) - 3))

________________________________________________________________________________________

sympy [A]  time = 0.66, size = 27, normalized size = 1.23 e3x4x+(x4x)log(4x+4)log(4x+4)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x**4+4*x**3-x-1)*ln(4*x+4)**2+(-24*x**4-24*x**3+2*x+2)*ln(4*x+4)+36*x**4+36*x**3+7*x+3)*exp(((x*
*4-x)*ln(4*x+4)-3*x**4-x)/(ln(4*x+4)-3))/((x+1)*ln(4*x+4)**2+(-6*x-6)*ln(4*x+4)+9*x+9),x)

[Out]

exp((-3*x**4 - x + (x**4 - x)*log(4*x + 4))/(log(4*x + 4) - 3))

________________________________________________________________________________________