3.89.15
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [B] time = 0.47, antiderivative size = 152, normalized size of antiderivative = 5.24,
number of steps used = 1, number of rules used = 1, integrand size = 169, = 0.006, Rules used
= {2288}
Antiderivative was successfully verified.
[In]
Int[(E^(-256*x + 32*x^2 - x^3)*(2 + 2*x + 2*E^(2*x)*x^2 + E^x*(4*x + x^2 - x^3) + (-512*x - 128*x^2 + 58*x^3 -
3*x^4 + E^(2*x)*(-512*x^3 + 128*x^4 - 6*x^5) + E^x*(-1024*x^2 + 52*x^4 - 3*x^5))*Log[(2*x + x^2 + 2*E^x*x^2)/
(2 + 2*E^x*x)]))/(2*x + x^2 + 2*E^(2*x)*x^3 + E^x*(4*x^2 + x^3)),x]
[Out]
(E^(-256*x + 32*x^2 - x^3)*(512*x + 128*x^2 - 58*x^3 + 3*x^4 + 2*E^(2*x)*(256*x^3 - 64*x^4 + 3*x^5) + E^x*(102
4*x^2 - 52*x^4 + 3*x^5))*Log[(2*x + x^2 + 2*E^x*x^2)/(2*(1 + E^x*x))])/((256 - 64*x + 3*x^2)*(2*x + x^2 + 2*E^
(2*x)*x^3 + E^x*(4*x^2 + x^3)))
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 33, normalized size = 1.14
Antiderivative was successfully verified.
[In]
Integrate[(E^(-256*x + 32*x^2 - x^3)*(2 + 2*x + 2*E^(2*x)*x^2 + E^x*(4*x + x^2 - x^3) + (-512*x - 128*x^2 + 58
*x^3 - 3*x^4 + E^(2*x)*(-512*x^3 + 128*x^4 - 6*x^5) + E^x*(-1024*x^2 + 52*x^4 - 3*x^5))*Log[(2*x + x^2 + 2*E^x
*x^2)/(2 + 2*E^x*x)]))/(2*x + x^2 + 2*E^(2*x)*x^3 + E^x*(4*x^2 + x^3)),x]
[Out]
Log[(x*(2 + x + 2*E^x*x))/(2 + 2*E^x*x)]/E^((-16 + x)^2*x)
________________________________________________________________________________________
fricas [A] time = 0.49, size = 41, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*x^5+128*x^4-512*x^3)*exp(x)^2+(-3*x^5+52*x^4-1024*x^2)*exp(x)-3*x^4+58*x^3-128*x^2-512*x)*log(
(2*exp(x)*x^2+x^2+2*x)/(2*exp(x)*x+2))+2*exp(x)^2*x^2+(-x^3+x^2+4*x)*exp(x)+2*x+2)/(2*exp(x)^2*x^3+(x^3+4*x^2)
*exp(x)+x^2+2*x)/exp(x^3-32*x^2+256*x),x, algorithm="fricas")
[Out]
e^(-x^3 + 32*x^2 - 256*x)*log(1/2*(2*x^2*e^x + x^2 + 2*x)/(x*e^x + 1))
________________________________________________________________________________________
giac [A] time = 0.84, size = 41, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*x^5+128*x^4-512*x^3)*exp(x)^2+(-3*x^5+52*x^4-1024*x^2)*exp(x)-3*x^4+58*x^3-128*x^2-512*x)*log(
(2*exp(x)*x^2+x^2+2*x)/(2*exp(x)*x+2))+2*exp(x)^2*x^2+(-x^3+x^2+4*x)*exp(x)+2*x+2)/(2*exp(x)^2*x^3+(x^3+4*x^2)
*exp(x)+x^2+2*x)/exp(x^3-32*x^2+256*x),x, algorithm="giac")
[Out]
e^(-x^3 + 32*x^2 - 256*x)*log(1/2*(2*x^2*e^x + x^2 + 2*x)/(x*e^x + 1))
________________________________________________________________________________________
maple [C] time = 0.27, size = 352, normalized size = 12.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-6*x^5+128*x^4-512*x^3)*exp(x)^2+(-3*x^5+52*x^4-1024*x^2)*exp(x)-3*x^4+58*x^3-128*x^2-512*x)*ln((2*exp(
x)*x^2+x^2+2*x)/(2*exp(x)*x+2))+2*exp(x)^2*x^2+(-x^3+x^2+4*x)*exp(x)+2*x+2)/(2*exp(x)^2*x^3+(x^3+4*x^2)*exp(x)
+x^2+2*x)/exp(x^3-32*x^2+256*x),x,method=_RETURNVERBOSE)
[Out]
exp(-(x-16)^2*x)*ln(1+(1/2+exp(x))*x)+1/2*(-I*Pi*csgn(I*x)*csgn(I*(1+(1/2+exp(x))*x)/(exp(x)*x+1))*csgn(I*x/(e
xp(x)*x+1)*(1+(1/2+exp(x))*x))+I*Pi*csgn(I*x)*csgn(I*x/(exp(x)*x+1)*(1+(1/2+exp(x))*x))^2-I*Pi*csgn(I*(1+(1/2+
exp(x))*x))*csgn(I/(exp(x)*x+1))*csgn(I*(1+(1/2+exp(x))*x)/(exp(x)*x+1))+I*Pi*csgn(I*(1+(1/2+exp(x))*x))*csgn(
I*(1+(1/2+exp(x))*x)/(exp(x)*x+1))^2+I*Pi*csgn(I/(exp(x)*x+1))*csgn(I*(1+(1/2+exp(x))*x)/(exp(x)*x+1))^2-I*Pi*
csgn(I*(1+(1/2+exp(x))*x)/(exp(x)*x+1))^3+I*Pi*csgn(I*(1+(1/2+exp(x))*x)/(exp(x)*x+1))*csgn(I*x/(exp(x)*x+1)*(
1+(1/2+exp(x))*x))^2-I*Pi*csgn(I*x/(exp(x)*x+1)*(1+(1/2+exp(x))*x))^3+2*ln(x)-2*ln(exp(x)*x+1))*exp(-(x-16)^2*
x)
________________________________________________________________________________________
maxima [B] time = 31.17, size = 70, normalized size = 2.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*x^5+128*x^4-512*x^3)*exp(x)^2+(-3*x^5+52*x^4-1024*x^2)*exp(x)-3*x^4+58*x^3-128*x^2-512*x)*log(
(2*exp(x)*x^2+x^2+2*x)/(2*exp(x)*x+2))+2*exp(x)^2*x^2+(-x^3+x^2+4*x)*exp(x)+2*x+2)/(2*exp(x)^2*x^3+(x^3+4*x^2)
*exp(x)+x^2+2*x)/exp(x^3-32*x^2+256*x),x, algorithm="maxima")
[Out]
-((log(2) - log(x))*e^(-x^3 + 32*x^2) - e^(-x^3 + 32*x^2)*log(2*x*e^x + x + 2) + e^(-x^3 + 32*x^2)*log(x*e^x +
1))*e^(-256*x)
________________________________________________________________________________________
mupad [B] time = 5.80, size = 42, normalized size = 1.45
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(32*x^2 - 256*x - x^3)*(2*x + 2*x^2*exp(2*x) - log((2*x + 2*x^2*exp(x) + x^2)/(2*x*exp(x) + 2))*(512*x
+ exp(x)*(1024*x^2 - 52*x^4 + 3*x^5) + exp(2*x)*(512*x^3 - 128*x^4 + 6*x^5) + 128*x^2 - 58*x^3 + 3*x^4) + exp
(x)*(4*x + x^2 - x^3) + 2))/(2*x + 2*x^3*exp(2*x) + exp(x)*(4*x^2 + x^3) + x^2),x)
[Out]
log((2*x + 2*x^2*exp(x) + x^2)/(2*x*exp(x) + 2))*exp(-256*x)*exp(-x^3)*exp(32*x^2)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-6*x**5+128*x**4-512*x**3)*exp(x)**2+(-3*x**5+52*x**4-1024*x**2)*exp(x)-3*x**4+58*x**3-128*x**2-5
12*x)*ln((2*exp(x)*x**2+x**2+2*x)/(2*exp(x)*x+2))+2*exp(x)**2*x**2+(-x**3+x**2+4*x)*exp(x)+2*x+2)/(2*exp(x)**2
*x**3+(x**3+4*x**2)*exp(x)+x**2+2*x)/exp(x**3-32*x**2+256*x),x)
[Out]
Timed out
________________________________________________________________________________________