3.89.16 2x+x22log(ex2)log(log(ex2))log(log(log(ex2)))+(1+x2)log(ex2)log(log(ex2))log2(log(log(ex2)))x2log(ex2)log(log(ex2))log2(log(log(ex2)))dx

Optimal. Leaf size=25 x+12+xlog(log(log(ex2)))x

________________________________________________________________________________________

Rubi [F]  time = 1.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2x+x22log(ex2)log(log(ex2))log(log(log(ex2)))+(1+x2)log(ex2)log(log(ex2))log2(log(log(ex2)))x2log(ex2)log(log(ex2))log2(log(log(ex2)))dx

Verification is not applicable to the result.

[In]

Int[(-2*x + x^2 - 2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]] + (-1 + x^2)*Log[E^x/2]*Log[Log[E^x/2]]*Lo
g[Log[Log[E^x/2]]]^2)/(x^2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]]^2),x]

[Out]

x^(-1) + x - Log[Log[Log[E^x/2]]]^(-1) - 2*Defer[Int][1/(x*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]]^2),
 x] - 2*Defer[Int][1/(x^2*Log[Log[Log[E^x/2]]]), x]

Rubi steps

integral=(2+x)xlog(ex2)log(log(ex2))+log(log(log(ex2)))(2+(1+x2)log(log(log(ex2))))x2log2(log(log(ex2)))dx=(1+x2x2+2+xxlog(ex2)log(log(ex2))log2(log(log(ex2)))2x2log(log(log(ex2))))dx=(21x2log(log(log(ex2)))dx)+1+x2x2dx+2+xxlog(ex2)log(log(ex2))log2(log(log(ex2)))dx=(21x2log(log(log(ex2)))dx)+(11x2)dx+(1log(ex2)log(log(ex2))log2(log(log(ex2)))2xlog(ex2)log(log(ex2))log2(log(log(ex2))))dx=1x+x21xlog(ex2)log(log(ex2))log2(log(log(ex2)))dx21x2log(log(log(ex2)))dx+1log(ex2)log(log(ex2))log2(log(log(ex2)))dx=1x+x21xlog(ex2)log(log(ex2))log2(log(log(ex2)))dx21x2log(log(log(ex2)))dx+Subst(1xlog(x2)log(log(x2))log2(log(log(x2)))dx,x,ex)=1x+x21xlog(ex2)log(log(ex2))log2(log(log(ex2)))dx21x2log(log(log(ex2)))dx+Subst(1xlog(x)log2(log(x))dx,x,log(ex2))=1x+x21xlog(ex2)log(log(ex2))log2(log(log(ex2)))dx21x2log(log(log(ex2)))dx+Subst(1xlog2(x)dx,x,log(log(ex2)))=1x+x21xlog(ex2)log(log(ex2))log2(log(log(ex2)))dx21x2log(log(log(ex2)))dx+Subst(1x2dx,x,log(log(log(ex2))))=1x+x1log(log(log(ex2)))21xlog(ex2)log(log(ex2))log2(log(log(ex2)))dx21x2log(log(log(ex2)))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 26, normalized size = 1.04 1x+x+2xxlog(log(log(ex2)))

Antiderivative was successfully verified.

[In]

Integrate[(-2*x + x^2 - 2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]] + (-1 + x^2)*Log[E^x/2]*Log[Log[E^x/
2]]*Log[Log[Log[E^x/2]]]^2)/(x^2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]]^2),x]

[Out]

x^(-1) + x + (2 - x)/(x*Log[Log[Log[E^x/2]]])

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 33, normalized size = 1.32 (x2+1)log(log(xlog(2)))x+2xlog(log(xlog(2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^2-1)*log(1/2*exp(x))*log(log(1/2*exp(x)))*log(log(log(1/2*exp(x))))^2-2*log(1/2*exp(x))*log(log(
1/2*exp(x)))*log(log(log(1/2*exp(x))))+x^2-2*x)/x^2/log(1/2*exp(x))/log(log(1/2*exp(x)))/log(log(log(1/2*exp(x
))))^2,x, algorithm="fricas")

[Out]

((x^2 + 1)*log(log(x - log(2))) - x + 2)/(x*log(log(x - log(2))))

________________________________________________________________________________________

giac [A]  time = 0.16, size = 23, normalized size = 0.92 x+1xx2xlog(log(xlog(2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^2-1)*log(1/2*exp(x))*log(log(1/2*exp(x)))*log(log(log(1/2*exp(x))))^2-2*log(1/2*exp(x))*log(log(
1/2*exp(x)))*log(log(log(1/2*exp(x))))+x^2-2*x)/x^2/log(1/2*exp(x))/log(log(1/2*exp(x)))/log(log(log(1/2*exp(x
))))^2,x, algorithm="giac")

[Out]

x + 1/x - (x - 2)/(x*log(log(x - log(2))))

________________________________________________________________________________________

maple [A]  time = 0.37, size = 31, normalized size = 1.24




method result size



risch x2+1xx2xln(ln(ln(2)+ln(ex))) 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^2-1)*ln(1/2*exp(x))*ln(ln(1/2*exp(x)))*ln(ln(ln(1/2*exp(x))))^2-2*ln(1/2*exp(x))*ln(ln(1/2*exp(x)))*ln
(ln(ln(1/2*exp(x))))+x^2-2*x)/x^2/ln(1/2*exp(x))/ln(ln(1/2*exp(x)))/ln(ln(ln(1/2*exp(x))))^2,x,method=_RETURNV
ERBOSE)

[Out]

(x^2+1)/x-(x-2)/x/ln(ln(-ln(2)+ln(exp(x))))

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 31, normalized size = 1.24 x+1x1log(log(log(12ex)))+2xlog(log(xlog(2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^2-1)*log(1/2*exp(x))*log(log(1/2*exp(x)))*log(log(log(1/2*exp(x))))^2-2*log(1/2*exp(x))*log(log(
1/2*exp(x)))*log(log(log(1/2*exp(x))))+x^2-2*x)/x^2/log(1/2*exp(x))/log(log(1/2*exp(x)))/log(log(log(1/2*exp(x
))))^2,x, algorithm="maxima")

[Out]

x + 1/x - 1/log(log(log(1/2*e^x))) + 2/(x*log(log(x - log(2))))

________________________________________________________________________________________

mupad [B]  time = 5.69, size = 32, normalized size = 1.28 x+2xln(ln(xln(2)))+1x1ln(ln(xln(2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x - x^2 + 2*log(log(exp(x)/2))*log(log(log(exp(x)/2)))*log(exp(x)/2) - log(log(exp(x)/2))*log(log(log(
exp(x)/2)))^2*log(exp(x)/2)*(x^2 - 1))/(x^2*log(log(exp(x)/2))*log(log(log(exp(x)/2)))^2*log(exp(x)/2)),x)

[Out]

x + 2/(x*log(log(x - log(2)))) + 1/x - 1/log(log(x - log(2)))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x**2-1)*ln(1/2*exp(x))*ln(ln(1/2*exp(x)))*ln(ln(ln(1/2*exp(x))))**2-2*ln(1/2*exp(x))*ln(ln(1/2*exp
(x)))*ln(ln(ln(1/2*exp(x))))+x**2-2*x)/x**2/ln(1/2*exp(x))/ln(ln(1/2*exp(x)))/ln(ln(ln(1/2*exp(x))))**2,x)

[Out]

Timed out

________________________________________________________________________________________