3.89.16
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [F] time = 1.26, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-2*x + x^2 - 2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]] + (-1 + x^2)*Log[E^x/2]*Log[Log[E^x/2]]*Lo
g[Log[Log[E^x/2]]]^2)/(x^2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]]^2),x]
[Out]
x^(-1) + x - Log[Log[Log[E^x/2]]]^(-1) - 2*Defer[Int][1/(x*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]]^2),
x] - 2*Defer[Int][1/(x^2*Log[Log[Log[E^x/2]]]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 26, normalized size = 1.04
Antiderivative was successfully verified.
[In]
Integrate[(-2*x + x^2 - 2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]] + (-1 + x^2)*Log[E^x/2]*Log[Log[E^x/
2]]*Log[Log[Log[E^x/2]]]^2)/(x^2*Log[E^x/2]*Log[Log[E^x/2]]*Log[Log[Log[E^x/2]]]^2),x]
[Out]
x^(-1) + x + (2 - x)/(x*Log[Log[Log[E^x/2]]])
________________________________________________________________________________________
fricas [A] time = 0.47, size = 33, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^2-1)*log(1/2*exp(x))*log(log(1/2*exp(x)))*log(log(log(1/2*exp(x))))^2-2*log(1/2*exp(x))*log(log(
1/2*exp(x)))*log(log(log(1/2*exp(x))))+x^2-2*x)/x^2/log(1/2*exp(x))/log(log(1/2*exp(x)))/log(log(log(1/2*exp(x
))))^2,x, algorithm="fricas")
[Out]
((x^2 + 1)*log(log(x - log(2))) - x + 2)/(x*log(log(x - log(2))))
________________________________________________________________________________________
giac [A] time = 0.16, size = 23, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^2-1)*log(1/2*exp(x))*log(log(1/2*exp(x)))*log(log(log(1/2*exp(x))))^2-2*log(1/2*exp(x))*log(log(
1/2*exp(x)))*log(log(log(1/2*exp(x))))+x^2-2*x)/x^2/log(1/2*exp(x))/log(log(1/2*exp(x)))/log(log(log(1/2*exp(x
))))^2,x, algorithm="giac")
[Out]
x + 1/x - (x - 2)/(x*log(log(x - log(2))))
________________________________________________________________________________________
maple [A] time = 0.37, size = 31, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x^2-1)*ln(1/2*exp(x))*ln(ln(1/2*exp(x)))*ln(ln(ln(1/2*exp(x))))^2-2*ln(1/2*exp(x))*ln(ln(1/2*exp(x)))*ln
(ln(ln(1/2*exp(x))))+x^2-2*x)/x^2/ln(1/2*exp(x))/ln(ln(1/2*exp(x)))/ln(ln(ln(1/2*exp(x))))^2,x,method=_RETURNV
ERBOSE)
[Out]
(x^2+1)/x-(x-2)/x/ln(ln(-ln(2)+ln(exp(x))))
________________________________________________________________________________________
maxima [A] time = 0.54, size = 31, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^2-1)*log(1/2*exp(x))*log(log(1/2*exp(x)))*log(log(log(1/2*exp(x))))^2-2*log(1/2*exp(x))*log(log(
1/2*exp(x)))*log(log(log(1/2*exp(x))))+x^2-2*x)/x^2/log(1/2*exp(x))/log(log(1/2*exp(x)))/log(log(log(1/2*exp(x
))))^2,x, algorithm="maxima")
[Out]
x + 1/x - 1/log(log(log(1/2*e^x))) + 2/(x*log(log(x - log(2))))
________________________________________________________________________________________
mupad [B] time = 5.69, size = 32, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(2*x - x^2 + 2*log(log(exp(x)/2))*log(log(log(exp(x)/2)))*log(exp(x)/2) - log(log(exp(x)/2))*log(log(log(
exp(x)/2)))^2*log(exp(x)/2)*(x^2 - 1))/(x^2*log(log(exp(x)/2))*log(log(log(exp(x)/2)))^2*log(exp(x)/2)),x)
[Out]
x + 2/(x*log(log(x - log(2)))) + 1/x - 1/log(log(x - log(2)))
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x**2-1)*ln(1/2*exp(x))*ln(ln(1/2*exp(x)))*ln(ln(ln(1/2*exp(x))))**2-2*ln(1/2*exp(x))*ln(ln(1/2*exp
(x)))*ln(ln(ln(1/2*exp(x))))+x**2-2*x)/x**2/ln(1/2*exp(x))/ln(ln(1/2*exp(x)))/ln(ln(ln(1/2*exp(x))))**2,x)
[Out]
Timed out
________________________________________________________________________________________