3.89.18 2+x+((12+7x)log(3)+(127x)log(x))log(log(3)+log(x))(256x7+256x864x9)log(3)+(256x7256x8+64x9)log(x)dx

Optimal. Leaf size=20 log(log(3)+log(x))64(2+x)x6

________________________________________________________________________________________

Rubi [F]  time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 2+x+((12+7x)log(3)+(127x)log(x))log(log(3)+log(x))(256x7+256x864x9)log(3)+(256x7256x8+64x9)log(x)dx

Verification is not applicable to the result.

[In]

Int[(-2 + x + ((-12 + 7*x)*Log[3] + (12 - 7*x)*Log[x])*Log[-Log[3] + Log[x]])/((-256*x^7 + 256*x^8 - 64*x^9)*L
og[3] + (256*x^7 - 256*x^8 + 64*x^9)*Log[x]),x]

[Out]

ExpIntegralEi[-6*Log[x/3]]/93312 + ExpIntegralEi[-5*Log[x/3]]/62208 + ExpIntegralEi[-4*Log[x/3]]/41472 + ExpIn
tegralEi[-3*Log[x/3]]/27648 + ExpIntegralEi[-2*Log[x/3]]/18432 + ExpIntegralEi[-Log[x/3]]/12288 - Log[Log[x/3]
]/(128*x^6) - Log[Log[x/3]]/(256*x^5) - Log[Log[x/3]]/(512*x^4) - Log[Log[x/3]]/(1024*x^3) - Log[Log[x/3]]/(20
48*x^2) - Log[Log[x/3]]/(4096*x) - Defer[Int][1/((-2 + x)*x^7*(Log[3] - Log[x])), x]/64 - (3*Defer[Subst][Defe
r[Int][Log[Log[x]]/(-2 + 3*x)^2, x], x, x/3])/4096

Rubi steps

integral=2x+(12+7x)log(x3)log(log(x3))64(2x)2x7(log(3)log(x))dx=1642x+(12+7x)log(x3)log(log(x3))(2x)2x7(log(3)log(x))dx=164(1(2+x)x7(log(3)log(x))(12+7x)log(log(x3))(2+x)2x7)dx=(1641(2+x)x7(log(3)log(x))dx)164(12+7x)log(log(x3))(2+x)2x7dx=(1641(2+x)x7(log(3)log(x))dx)164(log(log(x3))64(2+x)23log(log(x3))x75log(log(x3))4x6log(log(x3))2x53log(log(x3))16x4log(log(x3))16x3log(log(x3))64x2)dx=log(log(x3))(2+x)2dx4096+log(log(x3))x2dx4096+log(log(x3))x3dx1024+3log(log(x3))x4dx1024+1128log(log(x3))x5dx1641(2+x)x7(log(3)log(x))dx+5256log(log(x3))x6dx+364log(log(x3))x7dx=log(log(x3))128x6log(log(x3))256x5log(log(x3))512x4log(log(x3))1024x3log(log(x3))2048x2log(log(x3))4096x+1x2log(x3)dx4096+1x3log(x3)dx20483Subst(log(log(x))(2+3x)2dx,x,x3)4096+1x4log(x3)dx1024+15121x5log(x3)dx+12561x6log(x3)dx+11281x7log(x3)dx1641(2+x)x7(log(3)log(x))dx=log(log(x3))128x6log(log(x3))256x5log(log(x3))512x4log(log(x3))1024x3log(log(x3))2048x2log(log(x3))4096x+Subst(e6xxdx,x,log(x3))93312+Subst(e5xxdx,x,log(x3))62208+Subst(e4xxdx,x,log(x3))41472+Subst(e3xxdx,x,log(x3))27648+Subst(e2xxdx,x,log(x3))18432+Subst(exxdx,x,log(x3))122883Subst(log(log(x))(2+3x)2dx,x,x3)40961641(2+x)x7(log(3)log(x))dx=Ei(6log(x3))93312+Ei(5log(x3))62208+Ei(4log(x3))41472+Ei(3log(x3))27648+Ei(2log(x3))18432+Ei(log(x3))12288log(log(x3))128x6log(log(x3))256x5log(log(x3))512x4log(log(x3))1024x3log(log(x3))2048x2log(log(x3))4096x3Subst(log(log(x))(2+3x)2dx,x,x3)40961641(2+x)x7(log(3)log(x))dx

________________________________________________________________________________________

Mathematica [A]  time = 1.31, size = 19, normalized size = 0.95 log(log(x3))64(2+x)x6

Antiderivative was successfully verified.

[In]

Integrate[(-2 + x + ((-12 + 7*x)*Log[3] + (12 - 7*x)*Log[x])*Log[-Log[3] + Log[x]])/((-256*x^7 + 256*x^8 - 64*
x^9)*Log[3] + (256*x^7 - 256*x^8 + 64*x^9)*Log[x]),x]

[Out]

Log[Log[x/3]]/(64*(-2 + x)*x^6)

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 21, normalized size = 1.05 log(log(3)+log(x))64(x72x6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x+12)*log(x)+(7*x-12)*log(3))*log(log(x)-log(3))+x-2)/((64*x^9-256*x^8+256*x^7)*log(x)+(-64*x^
9+256*x^8-256*x^7)*log(3)),x, algorithm="fricas")

[Out]

1/64*log(-log(3) + log(x))/(x^7 - 2*x^6)

________________________________________________________________________________________

giac [B]  time = 0.19, size = 44, normalized size = 2.20 14096(1x2x5+2x4+4x3+8x2+16x+32x6)log(log(3)+log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x+12)*log(x)+(7*x-12)*log(3))*log(log(x)-log(3))+x-2)/((64*x^9-256*x^8+256*x^7)*log(x)+(-64*x^
9+256*x^8-256*x^7)*log(3)),x, algorithm="giac")

[Out]

1/4096*(1/(x - 2) - (x^5 + 2*x^4 + 4*x^3 + 8*x^2 + 16*x + 32)/x^6)*log(-log(3) + log(x))

________________________________________________________________________________________

maple [A]  time = 0.20, size = 19, normalized size = 0.95




method result size



risch ln(ln(x)ln(3))64x6(x2) 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-7*x+12)*ln(x)+(7*x-12)*ln(3))*ln(ln(x)-ln(3))+x-2)/((64*x^9-256*x^8+256*x^7)*ln(x)+(-64*x^9+256*x^8-25
6*x^7)*ln(3)),x,method=_RETURNVERBOSE)

[Out]

1/64*ln(ln(x)-ln(3))/x^6/(x-2)

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 21, normalized size = 1.05 log(log(3)+log(x))64(x72x6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x+12)*log(x)+(7*x-12)*log(3))*log(log(x)-log(3))+x-2)/((64*x^9-256*x^8+256*x^7)*log(x)+(-64*x^
9+256*x^8-256*x^7)*log(3)),x, algorithm="maxima")

[Out]

1/64*log(-log(3) + log(x))/(x^7 - 2*x^6)

________________________________________________________________________________________

mupad [B]  time = 6.03, size = 20, normalized size = 1.00 ln(ln(x3))128x664x7

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + log(log(x) - log(3))*(log(3)*(7*x - 12) - log(x)*(7*x - 12)) - 2)/(log(x)*(256*x^7 - 256*x^8 + 64*x^9
) - log(3)*(256*x^7 - 256*x^8 + 64*x^9)),x)

[Out]

-log(log(x/3))/(128*x^6 - 64*x^7)

________________________________________________________________________________________

sympy [A]  time = 0.53, size = 17, normalized size = 0.85 log(log(x)log(3))64x7128x6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-7*x+12)*ln(x)+(7*x-12)*ln(3))*ln(ln(x)-ln(3))+x-2)/((64*x**9-256*x**8+256*x**7)*ln(x)+(-64*x**9+
256*x**8-256*x**7)*ln(3)),x)

[Out]

log(log(x) - log(3))/(64*x**7 - 128*x**6)

________________________________________________________________________________________