Optimal. Leaf size=20 \[ \frac {\log (-\log (3)+\log (x))}{64 (-2+x) x^6} \]
________________________________________________________________________________________
Rubi [F] time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+x+((-12+7 x) \log (3)+(12-7 x) \log (x)) \log (-\log (3)+\log (x))}{\left (-256 x^7+256 x^8-64 x^9\right ) \log (3)+\left (256 x^7-256 x^8+64 x^9\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-x+(-12+7 x) \log \left (\frac {x}{3}\right ) \log \left (\log \left (\frac {x}{3}\right )\right )}{64 (2-x)^2 x^7 (\log (3)-\log (x))} \, dx\\ &=\frac {1}{64} \int \frac {2-x+(-12+7 x) \log \left (\frac {x}{3}\right ) \log \left (\log \left (\frac {x}{3}\right )\right )}{(2-x)^2 x^7 (\log (3)-\log (x))} \, dx\\ &=\frac {1}{64} \int \left (-\frac {1}{(-2+x) x^7 (\log (3)-\log (x))}-\frac {(-12+7 x) \log \left (\log \left (\frac {x}{3}\right )\right )}{(-2+x)^2 x^7}\right ) \, dx\\ &=-\left (\frac {1}{64} \int \frac {1}{(-2+x) x^7 (\log (3)-\log (x))} \, dx\right )-\frac {1}{64} \int \frac {(-12+7 x) \log \left (\log \left (\frac {x}{3}\right )\right )}{(-2+x)^2 x^7} \, dx\\ &=-\left (\frac {1}{64} \int \frac {1}{(-2+x) x^7 (\log (3)-\log (x))} \, dx\right )-\frac {1}{64} \int \left (\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{64 (-2+x)^2}-\frac {3 \log \left (\log \left (\frac {x}{3}\right )\right )}{x^7}-\frac {5 \log \left (\log \left (\frac {x}{3}\right )\right )}{4 x^6}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{2 x^5}-\frac {3 \log \left (\log \left (\frac {x}{3}\right )\right )}{16 x^4}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{16 x^3}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{64 x^2}\right ) \, dx\\ &=-\frac {\int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{(-2+x)^2} \, dx}{4096}+\frac {\int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{x^2} \, dx}{4096}+\frac {\int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{x^3} \, dx}{1024}+\frac {3 \int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{x^4} \, dx}{1024}+\frac {1}{128} \int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{x^5} \, dx-\frac {1}{64} \int \frac {1}{(-2+x) x^7 (\log (3)-\log (x))} \, dx+\frac {5}{256} \int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{x^6} \, dx+\frac {3}{64} \int \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{x^7} \, dx\\ &=-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{128 x^6}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{256 x^5}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{512 x^4}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{1024 x^3}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{2048 x^2}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{4096 x}+\frac {\int \frac {1}{x^2 \log \left (\frac {x}{3}\right )} \, dx}{4096}+\frac {\int \frac {1}{x^3 \log \left (\frac {x}{3}\right )} \, dx}{2048}-\frac {3 \operatorname {Subst}\left (\int \frac {\log (\log (x))}{(-2+3 x)^2} \, dx,x,\frac {x}{3}\right )}{4096}+\frac {\int \frac {1}{x^4 \log \left (\frac {x}{3}\right )} \, dx}{1024}+\frac {1}{512} \int \frac {1}{x^5 \log \left (\frac {x}{3}\right )} \, dx+\frac {1}{256} \int \frac {1}{x^6 \log \left (\frac {x}{3}\right )} \, dx+\frac {1}{128} \int \frac {1}{x^7 \log \left (\frac {x}{3}\right )} \, dx-\frac {1}{64} \int \frac {1}{(-2+x) x^7 (\log (3)-\log (x))} \, dx\\ &=-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{128 x^6}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{256 x^5}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{512 x^4}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{1024 x^3}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{2048 x^2}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{4096 x}+\frac {\operatorname {Subst}\left (\int \frac {e^{-6 x}}{x} \, dx,x,\log \left (\frac {x}{3}\right )\right )}{93312}+\frac {\operatorname {Subst}\left (\int \frac {e^{-5 x}}{x} \, dx,x,\log \left (\frac {x}{3}\right )\right )}{62208}+\frac {\operatorname {Subst}\left (\int \frac {e^{-4 x}}{x} \, dx,x,\log \left (\frac {x}{3}\right )\right )}{41472}+\frac {\operatorname {Subst}\left (\int \frac {e^{-3 x}}{x} \, dx,x,\log \left (\frac {x}{3}\right )\right )}{27648}+\frac {\operatorname {Subst}\left (\int \frac {e^{-2 x}}{x} \, dx,x,\log \left (\frac {x}{3}\right )\right )}{18432}+\frac {\operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {x}{3}\right )\right )}{12288}-\frac {3 \operatorname {Subst}\left (\int \frac {\log (\log (x))}{(-2+3 x)^2} \, dx,x,\frac {x}{3}\right )}{4096}-\frac {1}{64} \int \frac {1}{(-2+x) x^7 (\log (3)-\log (x))} \, dx\\ &=\frac {\text {Ei}\left (-6 \log \left (\frac {x}{3}\right )\right )}{93312}+\frac {\text {Ei}\left (-5 \log \left (\frac {x}{3}\right )\right )}{62208}+\frac {\text {Ei}\left (-4 \log \left (\frac {x}{3}\right )\right )}{41472}+\frac {\text {Ei}\left (-3 \log \left (\frac {x}{3}\right )\right )}{27648}+\frac {\text {Ei}\left (-2 \log \left (\frac {x}{3}\right )\right )}{18432}+\frac {\text {Ei}\left (-\log \left (\frac {x}{3}\right )\right )}{12288}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{128 x^6}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{256 x^5}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{512 x^4}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{1024 x^3}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{2048 x^2}-\frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{4096 x}-\frac {3 \operatorname {Subst}\left (\int \frac {\log (\log (x))}{(-2+3 x)^2} \, dx,x,\frac {x}{3}\right )}{4096}-\frac {1}{64} \int \frac {1}{(-2+x) x^7 (\log (3)-\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.31, size = 19, normalized size = 0.95 \begin {gather*} \frac {\log \left (\log \left (\frac {x}{3}\right )\right )}{64 (-2+x) x^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 21, normalized size = 1.05 \begin {gather*} \frac {\log \left (-\log \relax (3) + \log \relax (x)\right )}{64 \, {\left (x^{7} - 2 \, x^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 44, normalized size = 2.20 \begin {gather*} \frac {1}{4096} \, {\left (\frac {1}{x - 2} - \frac {x^{5} + 2 \, x^{4} + 4 \, x^{3} + 8 \, x^{2} + 16 \, x + 32}{x^{6}}\right )} \log \left (-\log \relax (3) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 19, normalized size = 0.95
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )-\ln \relax (3)\right )}{64 x^{6} \left (x -2\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 21, normalized size = 1.05 \begin {gather*} \frac {\log \left (-\log \relax (3) + \log \relax (x)\right )}{64 \, {\left (x^{7} - 2 \, x^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.03, size = 20, normalized size = 1.00 \begin {gather*} -\frac {\ln \left (\ln \left (\frac {x}{3}\right )\right )}{128\,x^6-64\,x^7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 17, normalized size = 0.85 \begin {gather*} \frac {\log {\left (\log {\relax (x )} - \log {\relax (3 )} \right )}}{64 x^{7} - 128 x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________