3.89.19
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [C] time = 0.57, antiderivative size = 50, normalized size of antiderivative = 1.85,
number of steps used = 17, number of rules used = 8, integrand size = 53, = 0.151, Rules used
= {6688, 14, 2309, 2178, 30, 2555, 2366, 6482}
Antiderivative was successfully verified.
[In]
Int[(5*Log[x] + (10 + (-15 + x^2)*Log[x])*Log[2*x] - 5*Log[x]*Log[2*x]*Log[x*Log[x]^2*Log[2*x]])/(x^2*Log[x]*L
og[2*x]),x]
[Out]
20/x + x + 10*ExpIntegralEi[-Log[x]] + 5*ExpIntegralEi[-Log[x]]*Log[x] - 5*ExpIntegralEi[-Log[x]]*(2 + Log[x])
+ (5*Log[x*Log[x]^2*Log[2*x]])/x
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2366
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[Sim
plifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] && !(EqQ[p, 1] && EqQ[a, 0] &&
NeQ[d, 0])
Rule 2555
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]
Rule 6482
Int[ExpIntegralEi[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[((a + b*x)*ExpIntegralEi[a + b*x])/b, x] - Simp[E^(a
+ b*x)/b, x] /; FreeQ[{a, b}, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 23, normalized size = 0.85
Antiderivative was successfully verified.
[In]
Integrate[(5*Log[x] + (10 + (-15 + x^2)*Log[x])*Log[2*x] - 5*Log[x]*Log[2*x]*Log[x*Log[x]^2*Log[2*x]])/(x^2*Lo
g[x]*Log[2*x]),x]
[Out]
20/x + x + (5*Log[x*Log[x]^2*Log[2*x]])/x
________________________________________________________________________________________
fricas [A] time = 0.50, size = 27, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*log(x)*log(2*x)*log(x*log(x)^2*log(2*x))+((x^2-15)*log(x)+10)*log(2*x)+5*log(x))/x^2/log(x)/log(
2*x),x, algorithm="fricas")
[Out]
(x^2 + 5*log(x*log(2)*log(x)^2 + x*log(x)^3) + 20)/x
________________________________________________________________________________________
giac [A] time = 0.20, size = 32, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*log(x)*log(2*x)*log(x*log(x)^2*log(2*x))+((x^2-15)*log(x)+10)*log(2*x)+5*log(x))/x^2/log(x)/log(
2*x),x, algorithm="giac")
[Out]
x + 5*log(log(2)*log(x)^2 + log(x)^3)/x + 5*log(x)/x + 20/x
________________________________________________________________________________________
maple [C] time = 0.60, size = 530, normalized size = 19.63
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-5*ln(x)*ln(2*x)*ln(x*ln(x)^2*ln(2*x))+((x^2-15)*ln(x)+10)*ln(2*x)+5*ln(x))/x^2/ln(x)/ln(2*x),x,method=_R
ETURNVERBOSE)
[Out]
5/x*ln(2*I*ln(2)+2*I*ln(x))-1/2*(5*I*Pi*csgn(I*x)*csgn(I*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))*csgn(I*x*(2*I*ln(2)+2*
I*ln(x))*ln(x)^2)+5*I*Pi*csgn(I*(2*I*ln(2)+2*I*ln(x)))*csgn(I*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))*csgn(I*ln(x)^2)-5
*I*Pi*csgn(I*x)*csgn(I*x*(2*I*ln(2)+2*I*ln(x))*ln(x)^2)^2-10*I*Pi*csgn(I*ln(x))*csgn(I*ln(x)^2)^2+5*I*Pi*csgn(
I*ln(x))^2*csgn(I*ln(x)^2)-5*I*Pi*csgn(x*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))^2+5*I*Pi*csgn(I*x*(2*I*ln(2)+2*I*ln(x)
)*ln(x)^2)*csgn(x*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))-5*I*Pi*csgn(I*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))*csgn(I*x*(2*I*ln
(2)+2*I*ln(x))*ln(x)^2)^2-5*I*Pi*csgn(I*x*(2*I*ln(2)+2*I*ln(x))*ln(x)^2)*csgn(x*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))
^2+5*I*Pi*csgn(I*x*(2*I*ln(2)+2*I*ln(x))*ln(x)^2)^3+5*I*Pi*csgn(I*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))^3-5*I*Pi*csgn
(I*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))^2*csgn(I*ln(x)^2)+5*I*Pi*csgn(I*ln(x)^2)^3+5*I*Pi*csgn(x*ln(x)^2*(2*I*ln(2)+
2*I*ln(x)))^3-5*I*Pi*csgn(I*(2*I*ln(2)+2*I*ln(x)))*csgn(I*ln(x)^2*(2*I*ln(2)+2*I*ln(x)))^2+5*I*Pi-2*x^2+10*ln(
2)-10*ln(x)-20*ln(ln(x))-40)/x
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*log(x)*log(2*x)*log(x*log(x)^2*log(2*x))+((x^2-15)*log(x)+10)*log(2*x)+5*log(x))/x^2/log(x)/log(
2*x),x, algorithm="maxima")
[Out]
x + 5*(log(x) + log(log(2) + log(x)) + 2*log(log(x)) + 1)/x + 15/x + 10*Ei(-log(2*x)) + 10*Ei(-log(x)) - 5*int
egrate(1/(x^2*log(2) + x^2*log(x)), x) - 10*integrate(1/(x^2*log(x)), x)
________________________________________________________________________________________
mupad [B] time = 5.80, size = 21, normalized size = 0.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((5*log(x) + log(2*x)*(log(x)*(x^2 - 15) + 10) - 5*log(2*x)*log(x*log(2*x)*log(x)^2)*log(x))/(x^2*log(2*x)*
log(x)),x)
[Out]
x + (5*log(x*log(2*x)*log(x)^2) + 20)/x
________________________________________________________________________________________
sympy [A] time = 0.41, size = 22, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-5*ln(x)*ln(2*x)*ln(x*ln(x)**2*ln(2*x))+((x**2-15)*ln(x)+10)*ln(2*x)+5*ln(x))/x**2/ln(x)/ln(2*x),x)
[Out]
x + 5*log(x*(log(x) + log(2))*log(x)**2)/x + 20/x
________________________________________________________________________________________