Optimal. Leaf size=34 \[ 5 \left (x+\frac {e^3 \left (4+e^{x-\frac {1+e^4 x}{x}}\right )}{\log \left (\frac {x}{2}\right )}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.32, antiderivative size = 69, normalized size of antiderivative = 2.03, number of steps used = 7, number of rules used = 5, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6742, 2288, 6688, 2302, 30} \begin {gather*} \frac {5 e^{x-\frac {1}{x}-e^4+3} \left (x^2 \log \left (\frac {x}{2}\right )+\log \left (\frac {x}{2}\right )\right )}{\left (\frac {1}{x^2}+1\right ) x^2 \log ^2\left (\frac {x}{2}\right )}+5 x+\frac {20 e^3}{\log \left (\frac {x}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2288
Rule 2302
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 e^{3 \left (1-\frac {e^4}{3}\right )-\frac {1}{x}+x} \left (-x+\log \left (\frac {x}{2}\right )+x^2 \log \left (\frac {x}{2}\right )\right )}{x^2 \log ^2\left (\frac {x}{2}\right )}-\frac {5 \left (4 e^3-x \log ^2\left (\frac {x}{2}\right )\right )}{x \log ^2\left (\frac {x}{2}\right )}\right ) \, dx\\ &=5 \int \frac {e^{3 \left (1-\frac {e^4}{3}\right )-\frac {1}{x}+x} \left (-x+\log \left (\frac {x}{2}\right )+x^2 \log \left (\frac {x}{2}\right )\right )}{x^2 \log ^2\left (\frac {x}{2}\right )} \, dx-5 \int \frac {4 e^3-x \log ^2\left (\frac {x}{2}\right )}{x \log ^2\left (\frac {x}{2}\right )} \, dx\\ &=\frac {5 e^{3-e^4-\frac {1}{x}+x} \left (\log \left (\frac {x}{2}\right )+x^2 \log \left (\frac {x}{2}\right )\right )}{\left (1+\frac {1}{x^2}\right ) x^2 \log ^2\left (\frac {x}{2}\right )}-5 \int \left (-1+\frac {4 e^3}{x \log ^2\left (\frac {x}{2}\right )}\right ) \, dx\\ &=5 x+\frac {5 e^{3-e^4-\frac {1}{x}+x} \left (\log \left (\frac {x}{2}\right )+x^2 \log \left (\frac {x}{2}\right )\right )}{\left (1+\frac {1}{x^2}\right ) x^2 \log ^2\left (\frac {x}{2}\right )}-\left (20 e^3\right ) \int \frac {1}{x \log ^2\left (\frac {x}{2}\right )} \, dx\\ &=5 x+\frac {5 e^{3-e^4-\frac {1}{x}+x} \left (\log \left (\frac {x}{2}\right )+x^2 \log \left (\frac {x}{2}\right )\right )}{\left (1+\frac {1}{x^2}\right ) x^2 \log ^2\left (\frac {x}{2}\right )}-\left (20 e^3\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (\frac {x}{2}\right )\right )\\ &=5 x+\frac {20 e^3}{\log \left (\frac {x}{2}\right )}+\frac {5 e^{3-e^4-\frac {1}{x}+x} \left (\log \left (\frac {x}{2}\right )+x^2 \log \left (\frac {x}{2}\right )\right )}{\left (1+\frac {1}{x^2}\right ) x^2 \log ^2\left (\frac {x}{2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 33, normalized size = 0.97 \begin {gather*} 5 x+\frac {5 e^3 \left (4+e^{-e^4-\frac {1}{x}+x}\right )}{\log \left (\frac {x}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 37, normalized size = 1.09 \begin {gather*} \frac {5 \, {\left (x \log \left (\frac {1}{2} \, x\right ) + 4 \, e^{3} + e^{\left (\frac {x^{2} - x e^{4} + 3 \, x - 1}{x}\right )}\right )}}{\log \left (\frac {1}{2} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 37, normalized size = 1.09 \begin {gather*} \frac {5 \, {\left (x \log \left (\frac {1}{2} \, x\right ) + 4 \, e^{3} + e^{\left (\frac {x^{2} - x e^{4} + 3 \, x - 1}{x}\right )}\right )}}{\log \left (\frac {1}{2} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 34, normalized size = 1.00
method | result | size |
risch | \(5 x +\frac {5 \,{\mathrm e}^{3} \left ({\mathrm e}^{-\frac {x \,{\mathrm e}^{4}-x^{2}+1}{x}}+4\right )}{\ln \left (\frac {x}{2}\right )}\) | \(34\) |
default | \(5 x +\frac {5 \,{\mathrm e}^{3} {\mathrm e}^{\frac {-x \,{\mathrm e}^{4}+x^{2}-1}{x}}}{\ln \left (\frac {x}{2}\right )}+\frac {20 \,{\mathrm e}^{3}}{\ln \left (\frac {x}{2}\right )}\) | \(40\) |
norman | \(\frac {20 x \,{\mathrm e}^{3}+5 x^{2} \ln \left (\frac {x}{2}\right )+5 x \,{\mathrm e}^{3} {\mathrm e}^{\frac {-x \,{\mathrm e}^{4}+x^{2}-1}{x}}}{x \ln \left (\frac {x}{2}\right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 41, normalized size = 1.21 \begin {gather*} 5 \, x - \frac {5 \, e^{\left (x - \frac {1}{x} + 3\right )}}{e^{\left (e^{4}\right )} \log \relax (2) - e^{\left (e^{4}\right )} \log \relax (x)} + \frac {20 \, e^{3}}{\log \left (\frac {1}{2} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 43, normalized size = 1.26 \begin {gather*} 5\,x-\frac {20\,{\mathrm {e}}^3}{\ln \relax (2)-\ln \relax (x)}-\frac {5\,{\mathrm {e}}^{-{\mathrm {e}}^4}\,{\mathrm {e}}^3\,{\mathrm {e}}^{-\frac {1}{x}}\,{\mathrm {e}}^x}{\ln \relax (2)-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 36, normalized size = 1.06 \begin {gather*} 5 x + \frac {5 e^{3} e^{\frac {x^{2} - x e^{4} - 1}{x}}}{\log {\left (\frac {x}{2} \right )}} + \frac {20 e^{3}}{\log {\left (\frac {x}{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________