3.89.32 e3x+2x212log(5)72log(x)xdx

Optimal. Leaf size=24 233e3x+x2(log(5)+6log(x))2

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 2, integrand size = 24, number of rulesintegrand size = 0.083, Rules used = {14, 2301} x2e3x36log2(x)12log(5)log(x)

Antiderivative was successfully verified.

[In]

Int[(-(E^3*x) + 2*x^2 - 12*Log[5] - 72*Log[x])/x,x]

[Out]

-(E^3*x) + x^2 - 12*Log[5]*Log[x] - 36*Log[x]^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rubi steps

integral=(e3x+2x212log(5)x72log(x)x)dx=(72log(x)xdx)+e3x+2x212log(5)xdx=36log2(x)+(e3+2x12log(5)x)dx=e3x+x212log(5)log(x)36log2(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 22, normalized size = 0.92 e3x+x212log(5)log(x)36log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(-(E^3*x) + 2*x^2 - 12*Log[5] - 72*Log[x])/x,x]

[Out]

-(E^3*x) + x^2 - 12*Log[5]*Log[x] - 36*Log[x]^2

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 21, normalized size = 0.88 x2xe312log(5)log(x)36log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-72*log(x)-12*log(5)-x*exp(3)+2*x^2)/x,x, algorithm="fricas")

[Out]

x^2 - x*e^3 - 12*log(5)*log(x) - 36*log(x)^2

________________________________________________________________________________________

giac [A]  time = 0.19, size = 21, normalized size = 0.88 x2xe312log(5)log(x)36log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-72*log(x)-12*log(5)-x*exp(3)+2*x^2)/x,x, algorithm="giac")

[Out]

x^2 - x*e^3 - 12*log(5)*log(x) - 36*log(x)^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 22, normalized size = 0.92




method result size



default xe3+x236ln(x)212ln(5)ln(x) 22
norman xe3+x236ln(x)212ln(5)ln(x) 22
risch xe3+x236ln(x)212ln(5)ln(x) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-72*ln(x)-12*ln(5)-x*exp(3)+2*x^2)/x,x,method=_RETURNVERBOSE)

[Out]

-x*exp(3)+x^2-36*ln(x)^2-12*ln(5)*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 21, normalized size = 0.88 x2xe312log(5)log(x)36log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-72*log(x)-12*log(5)-x*exp(3)+2*x^2)/x,x, algorithm="maxima")

[Out]

x^2 - x*e^3 - 12*log(5)*log(x) - 36*log(x)^2

________________________________________________________________________________________

mupad [B]  time = 5.30, size = 21, normalized size = 0.88 x2e3x36ln(x)212ln(5)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(12*log(5) + 72*log(x) + x*exp(3) - 2*x^2)/x,x)

[Out]

x^2 - 36*log(x)^2 - 12*log(5)*log(x) - x*exp(3)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 22, normalized size = 0.92 x2xe336log(x)212log(5)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-72*ln(x)-12*ln(5)-x*exp(3)+2*x**2)/x,x)

[Out]

x**2 - x*exp(3) - 36*log(x)**2 - 12*log(5)*log(x)

________________________________________________________________________________________