3.89.41
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 42, normalized size of antiderivative = 1.50,
number of steps used = 16, number of rules used = 5, integrand size = 42, = 0.119, Rules used
= {14, 2199, 2194, 2177, 2178}
Antiderivative was successfully verified.
[In]
Int[(48 - 84*x + 32*x^2 - 60*x^3 + E^x*(9*x - 11*x^2 + 4*x^3 + 15*x^5))/x^5,x]
[Out]
15*E^x - 12/x^4 + 28/x^3 - (3*E^x)/x^3 - 16/x^2 + (4*E^x)/x^2 + 60/x
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 38, normalized size = 1.36
Antiderivative was successfully verified.
[In]
Integrate[(48 - 84*x + 32*x^2 - 60*x^3 + E^x*(9*x - 11*x^2 + 4*x^3 + 15*x^5))/x^5,x]
[Out]
(-12 + (28 - 3*E^x)*x + 4*(-4 + E^x)*x^2 + 60*x^3 + 15*E^x*x^4)/x^4
________________________________________________________________________________________
fricas [A] time = 0.51, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x, algorithm="fricas")
[Out]
(60*x^3 - 16*x^2 + (15*x^4 + 4*x^2 - 3*x)*e^x + 28*x - 12)/x^4
________________________________________________________________________________________
giac [A] time = 0.21, size = 38, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x, algorithm="giac")
[Out]
(15*x^4*e^x + 60*x^3 + 4*x^2*e^x - 16*x^2 - 3*x*e^x + 28*x - 12)/x^4
________________________________________________________________________________________
maple [A] time = 0.03, size = 37, normalized size = 1.32
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x,method=_RETURNVERBOSE)
[Out]
(60*x^3-16*x^2+28*x-12)/x^4+(15*x^3+4*x-3)/x^3*exp(x)
________________________________________________________________________________________
maxima [C] time = 0.41, size = 46, normalized size = 1.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x, algorithm="maxima")
[Out]
60/x - 16/x^2 + 28/x^3 - 12/x^4 + 15*e^x + 4*gamma(-1, -x) + 11*gamma(-2, -x) + 9*gamma(-3, -x)
________________________________________________________________________________________
mupad [B] time = 0.09, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x)*(9*x - 11*x^2 + 4*x^3 + 15*x^5) - 84*x + 32*x^2 - 60*x^3 + 48)/x^5,x)
[Out]
15*exp(x) - (x*(3*exp(x) - 28) - x^2*(4*exp(x) - 16) - 60*x^3 + 12)/x^4
________________________________________________________________________________________
sympy [A] time = 0.13, size = 34, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((15*x**5+4*x**3-11*x**2+9*x)*exp(x)-60*x**3+32*x**2-84*x+48)/x**5,x)
[Out]
(15*x**3 + 4*x - 3)*exp(x)/x**3 - (-60*x**3 + 16*x**2 - 28*x + 12)/x**4
________________________________________________________________________________________