3.89.41 4884x+32x260x3+ex(9x11x2+4x3+15x5)x5dx

Optimal. Leaf size=28 5(34+3x5x2)(4+ex+4x)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 42, normalized size of antiderivative = 1.50, number of steps used = 16, number of rules used = 5, integrand size = 42, number of rulesintegrand size = 0.119, Rules used = {14, 2199, 2194, 2177, 2178} 12x43exx3+28x3+4exx216x2+15ex+60x

Antiderivative was successfully verified.

[In]

Int[(48 - 84*x + 32*x^2 - 60*x^3 + E^x*(9*x - 11*x^2 + 4*x^3 + 15*x^5))/x^5,x]

[Out]

15*E^x - 12/x^4 + 28/x^3 - (3*E^x)/x^3 - 16/x^2 + (4*E^x)/x^2 + 60/x

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rubi steps

integral=(4(12+21x8x2+15x3)x5+ex(911x+4x2+15x4)x4)dx=(412+21x8x2+15x3x5dx)+ex(911x+4x2+15x4)x4dx=(4(12x5+21x48x3+15x2)dx)+(15ex+9exx411exx3+4exx2)dx=12x4+28x316x2+60x+4exx2dx+9exx4dx11exx3dx+15exdx=15ex12x4+28x33exx316x2+11ex2x2+60x4exx+3exx3dx+4exxdx112exx2dx=15ex12x4+28x33exx316x2+4exx2+60x+3ex2x+4Ei(x)+32exx2dx112exxdx=15ex12x4+28x33exx316x2+4exx2+60x3Ei(x)2+32exxdx=15ex12x4+28x33exx316x2+4exx2+60x

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 38, normalized size = 1.36 12+(283ex)x+4(4+ex)x2+60x3+15exx4x4

Antiderivative was successfully verified.

[In]

Integrate[(48 - 84*x + 32*x^2 - 60*x^3 + E^x*(9*x - 11*x^2 + 4*x^3 + 15*x^5))/x^5,x]

[Out]

(-12 + (28 - 3*E^x)*x + 4*(-4 + E^x)*x^2 + 60*x^3 + 15*E^x*x^4)/x^4

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 36, normalized size = 1.29 60x316x2+(15x4+4x23x)ex+28x12x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x, algorithm="fricas")

[Out]

(60*x^3 - 16*x^2 + (15*x^4 + 4*x^2 - 3*x)*e^x + 28*x - 12)/x^4

________________________________________________________________________________________

giac [A]  time = 0.21, size = 38, normalized size = 1.36 15x4ex+60x3+4x2ex16x23xex+28x12x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x, algorithm="giac")

[Out]

(15*x^4*e^x + 60*x^3 + 4*x^2*e^x - 16*x^2 - 3*x*e^x + 28*x - 12)/x^4

________________________________________________________________________________________

maple [A]  time = 0.03, size = 37, normalized size = 1.32




method result size



risch 60x316x2+28x12x4+(15x3+4x3)exx3 37
norman 12+28x16x2+60x33exx+4exx2+15exx4x4 39
default 12x4+28x316x2+60x3exx3+4exx2+15ex 40



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x,method=_RETURNVERBOSE)

[Out]

(60*x^3-16*x^2+28*x-12)/x^4+(15*x^3+4*x-3)/x^3*exp(x)

________________________________________________________________________________________

maxima [C]  time = 0.41, size = 46, normalized size = 1.64 60x16x2+28x312x4+15ex+4Γ(1,x)+11Γ(2,x)+9Γ(3,x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x^5+4*x^3-11*x^2+9*x)*exp(x)-60*x^3+32*x^2-84*x+48)/x^5,x, algorithm="maxima")

[Out]

60/x - 16/x^2 + 28/x^3 - 12/x^4 + 15*e^x + 4*gamma(-1, -x) + 11*gamma(-2, -x) + 9*gamma(-3, -x)

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 36, normalized size = 1.29 15exx(3ex28)x2(4ex16)60x3+12x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(9*x - 11*x^2 + 4*x^3 + 15*x^5) - 84*x + 32*x^2 - 60*x^3 + 48)/x^5,x)

[Out]

15*exp(x) - (x*(3*exp(x) - 28) - x^2*(4*exp(x) - 16) - 60*x^3 + 12)/x^4

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 34, normalized size = 1.21 (15x3+4x3)exx360x3+16x228x+12x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((15*x**5+4*x**3-11*x**2+9*x)*exp(x)-60*x**3+32*x**2-84*x+48)/x**5,x)

[Out]

(15*x**3 + 4*x - 3)*exp(x)/x**3 - (-60*x**3 + 16*x**2 - 28*x + 12)/x**4

________________________________________________________________________________________