3.89.42 12log(181+x)81+xdx

Optimal. Leaf size=18 (12+log(x81x+x2))2

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 2, number of rules used = 2, integrand size = 16, number of rulesintegrand size = 0.125, Rules used = {2390, 2301} 14(2log(1x+81)+1)2

Antiderivative was successfully verified.

[In]

Int[(-1 - 2*Log[(81 + x)^(-1)])/(81 + x),x]

[Out]

(1 + 2*Log[(81 + x)^(-1)])^2/4

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rubi steps

integral=Subst(12log(1x)xdx,x,81+x)=14(1+2log(181+x))2

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 16, normalized size = 0.89 14(1+2log(181+x))2

Antiderivative was successfully verified.

[In]

Integrate[(-1 - 2*Log[(81 + x)^(-1)])/(81 + x),x]

[Out]

(1 + 2*Log[(81 + x)^(-1)])^2/4

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 15, normalized size = 0.83 log(1x+81)2+log(1x+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(1/(81+x))-1)/(81+x),x, algorithm="fricas")

[Out]

log(1/(x + 81))^2 + log(1/(x + 81))

________________________________________________________________________________________

giac [A]  time = 0.12, size = 13, normalized size = 0.72 log(x+81)2log(x+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(1/(81+x))-1)/(81+x),x, algorithm="giac")

[Out]

log(x + 81)^2 - log(x + 81)

________________________________________________________________________________________

maple [A]  time = 0.47, size = 16, normalized size = 0.89




method result size



derivativedivides ln(181+x)2+ln(181+x) 16
default ln(181+x)2+ln(181+x) 16
norman ln(181+x)2+ln(181+x) 16
risch ln(81+x)+ln(181+x)2 16



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*ln(1/(81+x))-1)/(81+x),x,method=_RETURNVERBOSE)

[Out]

ln(1/(81+x))^2+ln(1/(81+x))

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 12, normalized size = 0.67 14(2log(x+81)1)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*log(1/(81+x))-1)/(81+x),x, algorithm="maxima")

[Out]

1/4*(2*log(x + 81) - 1)^2

________________________________________________________________________________________

mupad [B]  time = 5.11, size = 15, normalized size = 0.83 ln(1x+81)2+ln(1x+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*log(1/(x + 81)) + 1)/(x + 81),x)

[Out]

log(1/(x + 81)) + log(1/(x + 81))^2

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 12, normalized size = 0.67 log(1x+81)2log(x+81)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*ln(1/(81+x))-1)/(81+x),x)

[Out]

log(1/(x + 81))**2 - log(x + 81)

________________________________________________________________________________________