3.89.45 1764x+ex(3+588x3x2)+(9x3exx)log(x)e2xx+6exx2+9x3dx

Optimal. Leaf size=17 195+x+log(x)ex3+x

________________________________________________________________________________________

Rubi [F]  time = 1.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 1764x+ex(3+588x3x2)+(9x3exx)log(x)e2xx+6exx2+9x3dx

Verification is not applicable to the result.

[In]

Int[(1764*x + E^x*(3 + 588*x - 3*x^2) + (-9*x - 3*E^x*x)*Log[x])/(E^(2*x)*x + 6*E^x*x^2 + 9*x^3),x]

[Out]

1755*Defer[Int][(E^x + 3*x)^(-2), x] - 9*Log[x]*Defer[Int][(E^x + 3*x)^(-2), x] - 1764*Defer[Int][x/(E^x + 3*x
)^2, x] + 9*Log[x]*Defer[Int][x/(E^x + 3*x)^2, x] + 9*Defer[Int][x^2/(E^x + 3*x)^2, x] + 588*Defer[Int][(E^x +
 3*x)^(-1), x] - 3*Log[x]*Defer[Int][(E^x + 3*x)^(-1), x] + 3*Defer[Int][1/(x*(E^x + 3*x)), x] - 3*Defer[Int][
x/(E^x + 3*x), x] + 9*Defer[Int][Defer[Int][(E^x + 3*x)^(-2), x]/x, x] - 9*Defer[Int][Defer[Int][x/(E^x + 3*x)
^2, x]/x, x] + 3*Defer[Int][Defer[Int][(E^x + 3*x)^(-1), x]/x, x]

Rubi steps

integral=3(588xex(1196x+x2)(3+ex)xlog(x))x(ex+3x)2dx=3588xex(1196x+x2)(3+ex)xlog(x)x(ex+3x)2dx=3(3(1+x)(195+x+log(x))(ex+3x)21196x+x2+xlog(x)x(ex+3x))dx=(31196x+x2+xlog(x)x(ex+3x)dx)+9(1+x)(195+x+log(x))(ex+3x)2dx=(3(196ex+3x1x(ex+3x)+xex+3x+log(x)ex+3x)dx)+9(195+x+log(x)(ex+3x)2+x(195+x+log(x))(ex+3x)2)dx=31x(ex+3x)dx3xex+3xdx3log(x)ex+3xdx9195+x+log(x)(ex+3x)2dx+9x(195+x+log(x))(ex+3x)2dx+5881ex+3xdx=31x(ex+3x)dx3xex+3xdx+31ex+3xdxxdx9(195(ex+3x)2+x(ex+3x)2+log(x)(ex+3x)2)dx+9(195x(ex+3x)2+x2(ex+3x)2+xlog(x)(ex+3x)2)dx+5881ex+3xdx(3log(x))1ex+3xdx=31x(ex+3x)dx3xex+3xdx+31ex+3xdxxdx9x(ex+3x)2dx+9x2(ex+3x)2dx9log(x)(ex+3x)2dx+9xlog(x)(ex+3x)2dx+5881ex+3xdx+17551(ex+3x)2dx1755x(ex+3x)2dx(3log(x))1ex+3xdx=31x(ex+3x)dx3xex+3xdx+31ex+3xdxxdx9x(ex+3x)2dx+9x2(ex+3x)2dx+91(ex+3x)2dxxdx9x(ex+3x)2dxxdx+5881ex+3xdx+17551(ex+3x)2dx1755x(ex+3x)2dx(3log(x))1ex+3xdx(9log(x))1(ex+3x)2dx+(9log(x))x(ex+3x)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.26, size = 16, normalized size = 0.94 3(195+x+log(x))ex+3x

Antiderivative was successfully verified.

[In]

Integrate[(1764*x + E^x*(3 + 588*x - 3*x^2) + (-9*x - 3*E^x*x)*Log[x])/(E^(2*x)*x + 6*E^x*x^2 + 9*x^3),x]

[Out]

(3*(-195 + x + Log[x]))/(E^x + 3*x)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 15, normalized size = 0.88 3(x+log(x)195)3x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(x)*x-9*x)*log(x)+(-3*x^2+588*x+3)*exp(x)+1764*x)/(x*exp(x)^2+6*exp(x)*x^2+9*x^3),x, algorit
hm="fricas")

[Out]

3*(x + log(x) - 195)/(3*x + e^x)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 15, normalized size = 0.88 3(x+log(x)195)3x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(x)*x-9*x)*log(x)+(-3*x^2+588*x+3)*exp(x)+1764*x)/(x*exp(x)^2+6*exp(x)*x^2+9*x^3),x, algorit
hm="giac")

[Out]

3*(x + log(x) - 195)/(3*x + e^x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 27, normalized size = 1.59




method result size



risch 3ln(x)3x+ex+3x5853x+ex 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*exp(x)*x-9*x)*ln(x)+(-3*x^2+588*x+3)*exp(x)+1764*x)/(x*exp(x)^2+6*exp(x)*x^2+9*x^3),x,method=_RETURNV
ERBOSE)

[Out]

3/(3*x+exp(x))*ln(x)+3*(x-195)/(3*x+exp(x))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 15, normalized size = 0.88 3(x+log(x)195)3x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(x)*x-9*x)*log(x)+(-3*x^2+588*x+3)*exp(x)+1764*x)/(x*exp(x)^2+6*exp(x)*x^2+9*x^3),x, algorit
hm="maxima")

[Out]

3*(x + log(x) - 195)/(3*x + e^x)

________________________________________________________________________________________

mupad [B]  time = 5.26, size = 15, normalized size = 0.88 3(x+ln(x)195)3x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1764*x - log(x)*(9*x + 3*x*exp(x)) + exp(x)*(588*x - 3*x^2 + 3))/(x*exp(2*x) + 6*x^2*exp(x) + 9*x^3),x)

[Out]

(3*(x + log(x) - 195))/(3*x + exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 15, normalized size = 0.88 3x+3log(x)5853x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(x)*x-9*x)*ln(x)+(-3*x**2+588*x+3)*exp(x)+1764*x)/(x*exp(x)**2+6*exp(x)*x**2+9*x**3),x)

[Out]

(3*x + 3*log(x) - 585)/(3*x + exp(x))

________________________________________________________________________________________