3.89.44
Optimal. Leaf size=20
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 36, normalized size of antiderivative = 1.80,
number of steps used = 23, number of rules used = 9, integrand size = 38, = 0.237, Rules used
= {6742, 2353, 2297, 2298, 2302, 30, 2306, 2309, 2178}
Antiderivative was successfully verified.
[In]
Int[(2 + 8*x + 8*x^2 + (-2 - 8*x - 8*x^2)*Log[x] + 4*x*Log[x]^2)/(x*Log[x]^3),x]
[Out]
-Log[x]^(-2) - (4*x)/Log[x]^2 - (4*x^2)/Log[x]^2 + 2/Log[x] + (4*x)/Log[x]
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2297
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
IntegerQ[2*p]
Rule 2298
Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 20, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(2 + 8*x + 8*x^2 + (-2 - 8*x - 8*x^2)*Log[x] + 4*x*Log[x]^2)/(x*Log[x]^3),x]
[Out]
-(((1 + 2*x)*(1 + 2*x - 2*Log[x]))/Log[x]^2)
________________________________________________________________________________________
fricas [A] time = 0.45, size = 25, normalized size = 1.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*log(x)^2+(-8*x^2-8*x-2)*log(x)+8*x^2+8*x+2)/x/log(x)^3,x, algorithm="fricas")
[Out]
-(4*x^2 - 2*(2*x + 1)*log(x) + 4*x + 1)/log(x)^2
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 1.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*log(x)^2+(-8*x^2-8*x-2)*log(x)+8*x^2+8*x+2)/x/log(x)^3,x, algorithm="giac")
[Out]
-(4*x^2 - 4*x*log(x) + 4*x - 2*log(x) + 1)/log(x)^2
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.25
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*x*ln(x)^2+(-8*x^2-8*x-2)*ln(x)+8*x^2+8*x+2)/x/ln(x)^3,x,method=_RETURNVERBOSE)
[Out]
(-1-4*x-4*x^2+4*x*ln(x)+2*ln(x))/ln(x)^2
________________________________________________________________________________________
maxima [C] time = 0.41, size = 50, normalized size = 2.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*log(x)^2+(-8*x^2-8*x-2)*log(x)+8*x^2+8*x+2)/x/log(x)^3,x, algorithm="maxima")
[Out]
2/log(x) - 1/log(x)^2 + 4*Ei(log(x)) - 8*gamma(-1, -log(x)) - 16*gamma(-1, -2*log(x)) - 8*gamma(-2, -log(x)) -
32*gamma(-2, -2*log(x))
________________________________________________________________________________________
mupad [B] time = 5.12, size = 24, normalized size = 1.20
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((8*x + 4*x*log(x)^2 - log(x)*(8*x + 8*x^2 + 2) + 8*x^2 + 2)/(x*log(x)^3),x)
[Out]
(4*x + 2)/log(x) - (2*x + 1)^2/log(x)^2
________________________________________________________________________________________
sympy [A] time = 0.10, size = 22, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*x*ln(x)**2+(-8*x**2-8*x-2)*ln(x)+8*x**2+8*x+2)/x/ln(x)**3,x)
[Out]
(-4*x**2 - 4*x + (4*x + 2)*log(x) - 1)/log(x)**2
________________________________________________________________________________________