3.89.44 2+8x+8x2+(28x8x2)log(x)+4xlog2(x)xlog3(x)dx

Optimal. Leaf size=20 log(2)(11+2xlog(x))2

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 36, normalized size of antiderivative = 1.80, number of steps used = 23, number of rules used = 9, integrand size = 38, number of rulesintegrand size = 0.237, Rules used = {6742, 2353, 2297, 2298, 2302, 30, 2306, 2309, 2178} 4x2log2(x)4xlog2(x)1log2(x)+4xlog(x)+2log(x)

Antiderivative was successfully verified.

[In]

Int[(2 + 8*x + 8*x^2 + (-2 - 8*x - 8*x^2)*Log[x] + 4*x*Log[x]^2)/(x*Log[x]^3),x]

[Out]

-Log[x]^(-2) - (4*x)/Log[x]^2 - (4*x^2)/Log[x]^2 + 2/Log[x] + (4*x)/Log[x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2297

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2298

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2353

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(2(1+2x)2xlog3(x)2(1+2x)2xlog2(x)+4log(x))dx=2(1+2x)2xlog3(x)dx2(1+2x)2xlog2(x)dx+41log(x)dx=4li(x)+2(4log3(x)+1xlog3(x)+4xlog3(x))dx2(4log2(x)+1xlog2(x)+4xlog2(x))dx=4li(x)+21xlog3(x)dx21xlog2(x)dx+81log3(x)dx+8xlog3(x)dx81log2(x)dx8xlog2(x)dx=4xlog2(x)4x2log2(x)+8xlog(x)+8x2log(x)+4li(x)+2Subst(1x3dx,x,log(x))2Subst(1x2dx,x,log(x))+41log2(x)dx+8xlog2(x)dx81log(x)dx16xlog(x)dx=1log2(x)4xlog2(x)4x2log2(x)+2log(x)+4xlog(x)4li(x)+41log(x)dx+16xlog(x)dx16Subst(e2xxdx,x,log(x))=16Ei(2log(x))1log2(x)4xlog2(x)4x2log2(x)+2log(x)+4xlog(x)+16Subst(e2xxdx,x,log(x))=1log2(x)4xlog2(x)4x2log2(x)+2log(x)+4xlog(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 20, normalized size = 1.00 (1+2x)(1+2x2log(x))log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(2 + 8*x + 8*x^2 + (-2 - 8*x - 8*x^2)*Log[x] + 4*x*Log[x]^2)/(x*Log[x]^3),x]

[Out]

-(((1 + 2*x)*(1 + 2*x - 2*Log[x]))/Log[x]^2)

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 25, normalized size = 1.25 4x22(2x+1)log(x)+4x+1log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*log(x)^2+(-8*x^2-8*x-2)*log(x)+8*x^2+8*x+2)/x/log(x)^3,x, algorithm="fricas")

[Out]

-(4*x^2 - 2*(2*x + 1)*log(x) + 4*x + 1)/log(x)^2

________________________________________________________________________________________

giac [A]  time = 0.14, size = 25, normalized size = 1.25 4x24xlog(x)+4x2log(x)+1log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*log(x)^2+(-8*x^2-8*x-2)*log(x)+8*x^2+8*x+2)/x/log(x)^3,x, algorithm="giac")

[Out]

-(4*x^2 - 4*x*log(x) + 4*x - 2*log(x) + 1)/log(x)^2

________________________________________________________________________________________

maple [A]  time = 0.03, size = 25, normalized size = 1.25




method result size



norman 14x4x2+4xln(x)+2ln(x)ln(x)2 25
risch 4x24xln(x)+4x2ln(x)+1ln(x)2 26
default 4xln(x)4x2ln(x)2+2ln(x)4xln(x)21ln(x)2 37



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*x*ln(x)^2+(-8*x^2-8*x-2)*ln(x)+8*x^2+8*x+2)/x/ln(x)^3,x,method=_RETURNVERBOSE)

[Out]

(-1-4*x-4*x^2+4*x*ln(x)+2*ln(x))/ln(x)^2

________________________________________________________________________________________

maxima [C]  time = 0.41, size = 50, normalized size = 2.50 2log(x)1log(x)2+4Ei(log(x))8Γ(1,log(x))16Γ(1,2log(x))8Γ(2,log(x))32Γ(2,2log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*log(x)^2+(-8*x^2-8*x-2)*log(x)+8*x^2+8*x+2)/x/log(x)^3,x, algorithm="maxima")

[Out]

2/log(x) - 1/log(x)^2 + 4*Ei(log(x)) - 8*gamma(-1, -log(x)) - 16*gamma(-1, -2*log(x)) - 8*gamma(-2, -log(x)) -
 32*gamma(-2, -2*log(x))

________________________________________________________________________________________

mupad [B]  time = 5.12, size = 24, normalized size = 1.20 4x+2ln(x)(2x+1)2ln(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x + 4*x*log(x)^2 - log(x)*(8*x + 8*x^2 + 2) + 8*x^2 + 2)/(x*log(x)^3),x)

[Out]

(4*x + 2)/log(x) - (2*x + 1)^2/log(x)^2

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 22, normalized size = 1.10 4x24x+(4x+2)log(x)1log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x*ln(x)**2+(-8*x**2-8*x-2)*ln(x)+8*x**2+8*x+2)/x/ln(x)**3,x)

[Out]

(-4*x**2 - 4*x + (4*x + 2)*log(x) - 1)/log(x)**2

________________________________________________________________________________________