Optimal. Leaf size=37 \[ \frac {\frac {\left (5+\frac {2}{-5+\frac {e^x}{3 (-12+x)}}\right )^2}{(-5+x)^2}+x+x^2}{x} \]
________________________________________________________________________________________
Rubi [F] time = 4.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {617025600-524471760 x-623591460 x^2+611580105 x^3-211803255 x^4+37236375 x^5-3533625 x^6+172125 x^7-3375 x^8+e^{3 x} \left (125-75 x-125 x^2+75 x^3-15 x^4+x^5\right )+e^{2 x} \left (63900-47565 x-63225 x^2+46065 x^3-11475 x^4+1215 x^5-45 x^6\right )+e^x \left (10879920-8987112 x-10753785 x^2+9244827 x^3-2756547 x^4+390825 x^5-26325 x^6+675 x^7\right )}{-729000000 x^2+619650000 x^3-212017500 x^4+37236375 x^5-3533625 x^6+172125 x^7-3375 x^8+e^{3 x} \left (-125 x^2+75 x^3-15 x^4+x^5\right )+e^{2 x} \left (-67500 x^2+46125 x^3-11475 x^4+1215 x^5-45 x^6\right )+e^x \left (-12150000 x^2+9315000 x^3-2757375 x^4+390825 x^5-26325 x^6+675 x^7\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{3 x} \left (125-75 x-125 x^2+75 x^3-15 x^4+x^5\right )+135 (-12+x)^3 \left (2645-1587 x-3125 x^2+1875 x^3-375 x^4+25 x^5\right )+15 e^{2 x} \left (-4260+3171 x+4215 x^2-3071 x^3+765 x^4-81 x^5+3 x^6\right )-9 e^x \left (1208880-998568 x-1194865 x^2+1027203 x^3-306283 x^4+43425 x^5-2925 x^6+75 x^7\right )}{\left (180+e^x-15 x\right )^3 (5-x)^3 x^2} \, dx\\ &=\int \left (-\frac {1080 (-13+x) (-12+x)^2}{\left (180+e^x-15 x\right )^3 (-5+x)^2 x}-\frac {60 \left (60+24 x-15 x^2+x^3\right )}{\left (180+e^x-15 x\right ) (-5+x)^3 x^2}-\frac {36 \left (-720-20508 x+7510 x^2-807 x^3+27 x^4\right )}{\left (180+e^x-15 x\right )^2 (-5+x)^3 x^2}+\frac {125-75 x-125 x^2+75 x^3-15 x^4+x^5}{(-5+x)^3 x^2}\right ) \, dx\\ &=-\left (36 \int \frac {-720-20508 x+7510 x^2-807 x^3+27 x^4}{\left (180+e^x-15 x\right )^2 (-5+x)^3 x^2} \, dx\right )-60 \int \frac {60+24 x-15 x^2+x^3}{\left (180+e^x-15 x\right ) (-5+x)^3 x^2} \, dx-1080 \int \frac {(-13+x) (-12+x)^2}{\left (180+e^x-15 x\right )^3 (-5+x)^2 x} \, dx+\int \frac {125-75 x-125 x^2+75 x^3-15 x^4+x^5}{(-5+x)^3 x^2} \, dx\\ &=-\left (36 \int \left (\frac {98}{5 \left (180+e^x-15 x\right )^2 (-5+x)^3}+\frac {7371}{25 \left (180+e^x-15 x\right )^2 (-5+x)^2}-\frac {3513}{25 \left (180+e^x-15 x\right )^2 (-5+x)}+\frac {144}{25 \left (180+e^x-15 x\right )^2 x^2}+\frac {4188}{25 \left (180+e^x-15 x\right )^2 x}\right ) \, dx\right )-60 \int \left (-\frac {14}{5 \left (180+e^x-15 x\right ) (-5+x)^3}-\frac {23}{25 \left (180+e^x-15 x\right ) (-5+x)^2}+\frac {12}{25 \left (180+e^x-15 x\right ) (-5+x)}-\frac {12}{25 \left (180+e^x-15 x\right ) x^2}-\frac {12}{25 \left (180+e^x-15 x\right ) x}\right ) \, dx-1080 \int \left (\frac {1}{\left (180+e^x-15 x\right )^3}-\frac {392}{5 \left (180+e^x-15 x\right )^3 (-5+x)^2}+\frac {1197}{25 \left (180+e^x-15 x\right )^3 (-5+x)}-\frac {1872}{25 \left (180+e^x-15 x\right )^3 x}\right ) \, dx+\int \left (1-\frac {10}{(-5+x)^3}+\frac {1}{(-5+x)^2}-\frac {1}{x^2}\right ) \, dx\\ &=\frac {5}{(5-x)^2}+\frac {1}{5-x}+\frac {1}{x}+x-\frac {144}{5} \int \frac {1}{\left (180+e^x-15 x\right ) (-5+x)} \, dx+\frac {144}{5} \int \frac {1}{\left (180+e^x-15 x\right ) x^2} \, dx+\frac {144}{5} \int \frac {1}{\left (180+e^x-15 x\right ) x} \, dx+\frac {276}{5} \int \frac {1}{\left (180+e^x-15 x\right ) (-5+x)^2} \, dx+168 \int \frac {1}{\left (180+e^x-15 x\right ) (-5+x)^3} \, dx-\frac {5184}{25} \int \frac {1}{\left (180+e^x-15 x\right )^2 x^2} \, dx-\frac {3528}{5} \int \frac {1}{\left (180+e^x-15 x\right )^2 (-5+x)^3} \, dx-1080 \int \frac {1}{\left (180+e^x-15 x\right )^3} \, dx+\frac {126468}{25} \int \frac {1}{\left (180+e^x-15 x\right )^2 (-5+x)} \, dx-\frac {150768}{25} \int \frac {1}{\left (180+e^x-15 x\right )^2 x} \, dx-\frac {265356}{25} \int \frac {1}{\left (180+e^x-15 x\right )^2 (-5+x)^2} \, dx-\frac {258552}{5} \int \frac {1}{\left (180+e^x-15 x\right )^3 (-5+x)} \, dx+\frac {404352}{5} \int \frac {1}{\left (180+e^x-15 x\right )^3 x} \, dx+84672 \int \frac {1}{\left (180+e^x-15 x\right )^3 (-5+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 67, normalized size = 1.81 \begin {gather*} \frac {1}{5-x}+\frac {5}{(-5+x)^2}+\frac {1}{x}+\frac {60 (-12+x)}{\left (180+e^x-15 x\right ) (-5+x)^2 x}+\frac {36 (-12+x)^2}{\left (180+e^x-15 x\right )^2 (-5+x)^2 x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 142, normalized size = 3.84 \begin {gather*} \frac {225 \, x^{6} - 7650 \, x^{5} + 92025 \, x^{4} - 459000 \, x^{3} + 814761 \, x^{2} + {\left (x^{4} - 10 \, x^{3} + 25 \, x^{2} + 25\right )} e^{\left (2 \, x\right )} - 30 \, {\left (x^{5} - 22 \, x^{4} + 145 \, x^{3} - 300 \, x^{2} + 23 \, x - 276\right )} e^{x} - 114264 \, x + 685584}{225 \, x^{5} - 7650 \, x^{4} + 92025 \, x^{3} - 459000 \, x^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{\left (2 \, x\right )} - 30 \, {\left (x^{4} - 22 \, x^{3} + 145 \, x^{2} - 300 \, x\right )} e^{x} + 810000 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 176, normalized size = 4.76 \begin {gather*} \frac {225 \, x^{6} - 30 \, x^{5} e^{x} - 7650 \, x^{5} + x^{4} e^{\left (2 \, x\right )} + 660 \, x^{4} e^{x} + 92025 \, x^{4} - 10 \, x^{3} e^{\left (2 \, x\right )} - 4350 \, x^{3} e^{x} - 459000 \, x^{3} + 25 \, x^{2} e^{\left (2 \, x\right )} + 9000 \, x^{2} e^{x} + 814761 \, x^{2} - 690 \, x e^{x} - 114264 \, x + 25 \, e^{\left (2 \, x\right )} + 8280 \, e^{x} + 685584}{225 \, x^{5} - 30 \, x^{4} e^{x} - 7650 \, x^{4} + x^{3} e^{\left (2 \, x\right )} + 660 \, x^{3} e^{x} + 92025 \, x^{3} - 10 \, x^{2} e^{\left (2 \, x\right )} - 4350 \, x^{2} e^{x} - 459000 \, x^{2} + 25 \, x e^{\left (2 \, x\right )} + 9000 \, x e^{x} + 810000 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 58, normalized size = 1.57
method | result | size |
risch | \(x +\frac {25}{x \left (x^{2}-10 x +25\right )}-\frac {12 \left (72 x^{2}-5 \,{\mathrm e}^{x} x -1728 x +60 \,{\mathrm e}^{x}+10368\right )}{x \left (x -5\right )^{2} \left (15 x -{\mathrm e}^{x}-180\right )^{2}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 142, normalized size = 3.84 \begin {gather*} \frac {225 \, x^{6} - 7650 \, x^{5} + 92025 \, x^{4} - 459000 \, x^{3} + 814761 \, x^{2} + {\left (x^{4} - 10 \, x^{3} + 25 \, x^{2} + 25\right )} e^{\left (2 \, x\right )} - 30 \, {\left (x^{5} - 22 \, x^{4} + 145 \, x^{3} - 300 \, x^{2} + 23 \, x - 276\right )} e^{x} - 114264 \, x + 685584}{225 \, x^{5} - 7650 \, x^{4} + 92025 \, x^{3} - 459000 \, x^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{\left (2 \, x\right )} - 30 \, {\left (x^{4} - 22 \, x^{3} + 145 \, x^{2} - 300 \, x\right )} e^{x} + 810000 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {524471760\,x+{\mathrm {e}}^{3\,x}\,\left (-x^5+15\,x^4-75\,x^3+125\,x^2+75\,x-125\right )+{\mathrm {e}}^x\,\left (-675\,x^7+26325\,x^6-390825\,x^5+2756547\,x^4-9244827\,x^3+10753785\,x^2+8987112\,x-10879920\right )+623591460\,x^2-611580105\,x^3+211803255\,x^4-37236375\,x^5+3533625\,x^6-172125\,x^7+3375\,x^8+{\mathrm {e}}^{2\,x}\,\left (45\,x^6-1215\,x^5+11475\,x^4-46065\,x^3+63225\,x^2+47565\,x-63900\right )-617025600}{{\mathrm {e}}^{2\,x}\,\left (45\,x^6-1215\,x^5+11475\,x^4-46125\,x^3+67500\,x^2\right )+{\mathrm {e}}^{3\,x}\,\left (-x^5+15\,x^4-75\,x^3+125\,x^2\right )+729000000\,x^2-619650000\,x^3+212017500\,x^4-37236375\,x^5+3533625\,x^6-172125\,x^7+3375\,x^8+{\mathrm {e}}^x\,\left (-675\,x^7+26325\,x^6-390825\,x^5+2757375\,x^4-9315000\,x^3+12150000\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 95, normalized size = 2.57 \begin {gather*} x + \frac {- 864 x^{2} + 20736 x + \left (60 x - 720\right ) e^{x} - 124416}{225 x^{5} - 7650 x^{4} + 92025 x^{3} - 459000 x^{2} + 810000 x + \left (x^{3} - 10 x^{2} + 25 x\right ) e^{2 x} + \left (- 30 x^{4} + 660 x^{3} - 4350 x^{2} + 9000 x\right ) e^{x}} + \frac {25}{x^{3} - 10 x^{2} + 25 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________