3.89.56
Optimal. Leaf size=37
________________________________________________________________________________________
Rubi [F] time = 4.92, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(617025600 - 524471760*x - 623591460*x^2 + 611580105*x^3 - 211803255*x^4 + 37236375*x^5 - 3533625*x^6 + 17
2125*x^7 - 3375*x^8 + E^(3*x)*(125 - 75*x - 125*x^2 + 75*x^3 - 15*x^4 + x^5) + E^(2*x)*(63900 - 47565*x - 6322
5*x^2 + 46065*x^3 - 11475*x^4 + 1215*x^5 - 45*x^6) + E^x*(10879920 - 8987112*x - 10753785*x^2 + 9244827*x^3 -
2756547*x^4 + 390825*x^5 - 26325*x^6 + 675*x^7))/(-729000000*x^2 + 619650000*x^3 - 212017500*x^4 + 37236375*x^
5 - 3533625*x^6 + 172125*x^7 - 3375*x^8 + E^(3*x)*(-125*x^2 + 75*x^3 - 15*x^4 + x^5) + E^(2*x)*(-67500*x^2 + 4
6125*x^3 - 11475*x^4 + 1215*x^5 - 45*x^6) + E^x*(-12150000*x^2 + 9315000*x^3 - 2757375*x^4 + 390825*x^5 - 2632
5*x^6 + 675*x^7)),x]
[Out]
5/(5 - x)^2 + (5 - x)^(-1) + x^(-1) + x - 1080*Defer[Int][(180 + E^x - 15*x)^(-3), x] - (3528*Defer[Int][1/((1
80 + E^x - 15*x)^2*(-5 + x)^3), x])/5 + 168*Defer[Int][1/((180 + E^x - 15*x)*(-5 + x)^3), x] + 84672*Defer[Int
][1/((180 + E^x - 15*x)^3*(-5 + x)^2), x] - (265356*Defer[Int][1/((180 + E^x - 15*x)^2*(-5 + x)^2), x])/25 + (
276*Defer[Int][1/((180 + E^x - 15*x)*(-5 + x)^2), x])/5 - (258552*Defer[Int][1/((180 + E^x - 15*x)^3*(-5 + x))
, x])/5 + (126468*Defer[Int][1/((180 + E^x - 15*x)^2*(-5 + x)), x])/25 - (144*Defer[Int][1/((180 + E^x - 15*x)
*(-5 + x)), x])/5 - (5184*Defer[Int][1/((180 + E^x - 15*x)^2*x^2), x])/25 + (144*Defer[Int][1/((180 + E^x - 15
*x)*x^2), x])/5 + (404352*Defer[Int][1/((180 + E^x - 15*x)^3*x), x])/5 - (150768*Defer[Int][1/((180 + E^x - 15
*x)^2*x), x])/25 + (144*Defer[Int][1/((180 + E^x - 15*x)*x), x])/5
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 67, normalized size = 1.81
Antiderivative was successfully verified.
[In]
Integrate[(617025600 - 524471760*x - 623591460*x^2 + 611580105*x^3 - 211803255*x^4 + 37236375*x^5 - 3533625*x^
6 + 172125*x^7 - 3375*x^8 + E^(3*x)*(125 - 75*x - 125*x^2 + 75*x^3 - 15*x^4 + x^5) + E^(2*x)*(63900 - 47565*x
- 63225*x^2 + 46065*x^3 - 11475*x^4 + 1215*x^5 - 45*x^6) + E^x*(10879920 - 8987112*x - 10753785*x^2 + 9244827*
x^3 - 2756547*x^4 + 390825*x^5 - 26325*x^6 + 675*x^7))/(-729000000*x^2 + 619650000*x^3 - 212017500*x^4 + 37236
375*x^5 - 3533625*x^6 + 172125*x^7 - 3375*x^8 + E^(3*x)*(-125*x^2 + 75*x^3 - 15*x^4 + x^5) + E^(2*x)*(-67500*x
^2 + 46125*x^3 - 11475*x^4 + 1215*x^5 - 45*x^6) + E^x*(-12150000*x^2 + 9315000*x^3 - 2757375*x^4 + 390825*x^5
- 26325*x^6 + 675*x^7)),x]
[Out]
(5 - x)^(-1) + 5/(-5 + x)^2 + x^(-1) + (60*(-12 + x))/((180 + E^x - 15*x)*(-5 + x)^2*x) + (36*(-12 + x)^2)/((1
80 + E^x - 15*x)^2*(-5 + x)^2*x) + x
________________________________________________________________________________________
fricas [B] time = 0.65, size = 142, normalized size = 3.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^5-15*x^4+75*x^3-125*x^2-75*x+125)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46065*x^3-63225*x^2-47565
*x+63900)*exp(x)^2+(675*x^7-26325*x^6+390825*x^5-2756547*x^4+9244827*x^3-10753785*x^2-8987112*x+10879920)*exp(
x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-211803255*x^4+611580105*x^3-623591460*x^2-524471760*x+61702560
0)/((x^5-15*x^4+75*x^3-125*x^2)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46125*x^3-67500*x^2)*exp(x)^2+(675*x^7-26
325*x^6+390825*x^5-2757375*x^4+9315000*x^3-12150000*x^2)*exp(x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-2
12017500*x^4+619650000*x^3-729000000*x^2),x, algorithm="fricas")
[Out]
(225*x^6 - 7650*x^5 + 92025*x^4 - 459000*x^3 + 814761*x^2 + (x^4 - 10*x^3 + 25*x^2 + 25)*e^(2*x) - 30*(x^5 - 2
2*x^4 + 145*x^3 - 300*x^2 + 23*x - 276)*e^x - 114264*x + 685584)/(225*x^5 - 7650*x^4 + 92025*x^3 - 459000*x^2
+ (x^3 - 10*x^2 + 25*x)*e^(2*x) - 30*(x^4 - 22*x^3 + 145*x^2 - 300*x)*e^x + 810000*x)
________________________________________________________________________________________
giac [B] time = 0.21, size = 176, normalized size = 4.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^5-15*x^4+75*x^3-125*x^2-75*x+125)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46065*x^3-63225*x^2-47565
*x+63900)*exp(x)^2+(675*x^7-26325*x^6+390825*x^5-2756547*x^4+9244827*x^3-10753785*x^2-8987112*x+10879920)*exp(
x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-211803255*x^4+611580105*x^3-623591460*x^2-524471760*x+61702560
0)/((x^5-15*x^4+75*x^3-125*x^2)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46125*x^3-67500*x^2)*exp(x)^2+(675*x^7-26
325*x^6+390825*x^5-2757375*x^4+9315000*x^3-12150000*x^2)*exp(x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-2
12017500*x^4+619650000*x^3-729000000*x^2),x, algorithm="giac")
[Out]
(225*x^6 - 30*x^5*e^x - 7650*x^5 + x^4*e^(2*x) + 660*x^4*e^x + 92025*x^4 - 10*x^3*e^(2*x) - 4350*x^3*e^x - 459
000*x^3 + 25*x^2*e^(2*x) + 9000*x^2*e^x + 814761*x^2 - 690*x*e^x - 114264*x + 25*e^(2*x) + 8280*e^x + 685584)/
(225*x^5 - 30*x^4*e^x - 7650*x^4 + x^3*e^(2*x) + 660*x^3*e^x + 92025*x^3 - 10*x^2*e^(2*x) - 4350*x^2*e^x - 459
000*x^2 + 25*x*e^(2*x) + 9000*x*e^x + 810000*x)
________________________________________________________________________________________
maple [A] time = 0.08, size = 58, normalized size = 1.57
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x^5-15*x^4+75*x^3-125*x^2-75*x+125)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46065*x^3-63225*x^2-47565*x+639
00)*exp(x)^2+(675*x^7-26325*x^6+390825*x^5-2756547*x^4+9244827*x^3-10753785*x^2-8987112*x+10879920)*exp(x)-337
5*x^8+172125*x^7-3533625*x^6+37236375*x^5-211803255*x^4+611580105*x^3-623591460*x^2-524471760*x+617025600)/((x
^5-15*x^4+75*x^3-125*x^2)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46125*x^3-67500*x^2)*exp(x)^2+(675*x^7-26325*x^
6+390825*x^5-2757375*x^4+9315000*x^3-12150000*x^2)*exp(x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-2120175
00*x^4+619650000*x^3-729000000*x^2),x,method=_RETURNVERBOSE)
[Out]
x+25/x/(x^2-10*x+25)-12*(72*x^2-5*exp(x)*x-1728*x+60*exp(x)+10368)/x/(x-5)^2/(15*x-exp(x)-180)^2
________________________________________________________________________________________
maxima [B] time = 0.54, size = 142, normalized size = 3.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^5-15*x^4+75*x^3-125*x^2-75*x+125)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46065*x^3-63225*x^2-47565
*x+63900)*exp(x)^2+(675*x^7-26325*x^6+390825*x^5-2756547*x^4+9244827*x^3-10753785*x^2-8987112*x+10879920)*exp(
x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-211803255*x^4+611580105*x^3-623591460*x^2-524471760*x+61702560
0)/((x^5-15*x^4+75*x^3-125*x^2)*exp(x)^3+(-45*x^6+1215*x^5-11475*x^4+46125*x^3-67500*x^2)*exp(x)^2+(675*x^7-26
325*x^6+390825*x^5-2757375*x^4+9315000*x^3-12150000*x^2)*exp(x)-3375*x^8+172125*x^7-3533625*x^6+37236375*x^5-2
12017500*x^4+619650000*x^3-729000000*x^2),x, algorithm="maxima")
[Out]
(225*x^6 - 7650*x^5 + 92025*x^4 - 459000*x^3 + 814761*x^2 + (x^4 - 10*x^3 + 25*x^2 + 25)*e^(2*x) - 30*(x^5 - 2
2*x^4 + 145*x^3 - 300*x^2 + 23*x - 276)*e^x - 114264*x + 685584)/(225*x^5 - 7650*x^4 + 92025*x^3 - 459000*x^2
+ (x^3 - 10*x^2 + 25*x)*e^(2*x) - 30*(x^4 - 22*x^3 + 145*x^2 - 300*x)*e^x + 810000*x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((524471760*x + exp(3*x)*(75*x + 125*x^2 - 75*x^3 + 15*x^4 - x^5 - 125) + exp(x)*(8987112*x + 10753785*x^2
- 9244827*x^3 + 2756547*x^4 - 390825*x^5 + 26325*x^6 - 675*x^7 - 10879920) + 623591460*x^2 - 611580105*x^3 + 2
11803255*x^4 - 37236375*x^5 + 3533625*x^6 - 172125*x^7 + 3375*x^8 + exp(2*x)*(47565*x + 63225*x^2 - 46065*x^3
+ 11475*x^4 - 1215*x^5 + 45*x^6 - 63900) - 617025600)/(exp(2*x)*(67500*x^2 - 46125*x^3 + 11475*x^4 - 1215*x^5
+ 45*x^6) + exp(3*x)*(125*x^2 - 75*x^3 + 15*x^4 - x^5) + 729000000*x^2 - 619650000*x^3 + 212017500*x^4 - 37236
375*x^5 + 3533625*x^6 - 172125*x^7 + 3375*x^8 + exp(x)*(12150000*x^2 - 9315000*x^3 + 2757375*x^4 - 390825*x^5
+ 26325*x^6 - 675*x^7)),x)
[Out]
int((524471760*x + exp(3*x)*(75*x + 125*x^2 - 75*x^3 + 15*x^4 - x^5 - 125) + exp(x)*(8987112*x + 10753785*x^2
- 9244827*x^3 + 2756547*x^4 - 390825*x^5 + 26325*x^6 - 675*x^7 - 10879920) + 623591460*x^2 - 611580105*x^3 + 2
11803255*x^4 - 37236375*x^5 + 3533625*x^6 - 172125*x^7 + 3375*x^8 + exp(2*x)*(47565*x + 63225*x^2 - 46065*x^3
+ 11475*x^4 - 1215*x^5 + 45*x^6 - 63900) - 617025600)/(exp(2*x)*(67500*x^2 - 46125*x^3 + 11475*x^4 - 1215*x^5
+ 45*x^6) + exp(3*x)*(125*x^2 - 75*x^3 + 15*x^4 - x^5) + 729000000*x^2 - 619650000*x^3 + 212017500*x^4 - 37236
375*x^5 + 3533625*x^6 - 172125*x^7 + 3375*x^8 + exp(x)*(12150000*x^2 - 9315000*x^3 + 2757375*x^4 - 390825*x^5
+ 26325*x^6 - 675*x^7)), x)
________________________________________________________________________________________
sympy [B] time = 0.42, size = 95, normalized size = 2.57
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x**5-15*x**4+75*x**3-125*x**2-75*x+125)*exp(x)**3+(-45*x**6+1215*x**5-11475*x**4+46065*x**3-63225*
x**2-47565*x+63900)*exp(x)**2+(675*x**7-26325*x**6+390825*x**5-2756547*x**4+9244827*x**3-10753785*x**2-8987112
*x+10879920)*exp(x)-3375*x**8+172125*x**7-3533625*x**6+37236375*x**5-211803255*x**4+611580105*x**3-623591460*x
**2-524471760*x+617025600)/((x**5-15*x**4+75*x**3-125*x**2)*exp(x)**3+(-45*x**6+1215*x**5-11475*x**4+46125*x**
3-67500*x**2)*exp(x)**2+(675*x**7-26325*x**6+390825*x**5-2757375*x**4+9315000*x**3-12150000*x**2)*exp(x)-3375*
x**8+172125*x**7-3533625*x**6+37236375*x**5-212017500*x**4+619650000*x**3-729000000*x**2),x)
[Out]
x + (-864*x**2 + 20736*x + (60*x - 720)*exp(x) - 124416)/(225*x**5 - 7650*x**4 + 92025*x**3 - 459000*x**2 + 81
0000*x + (x**3 - 10*x**2 + 25*x)*exp(2*x) + (-30*x**4 + 660*x**3 - 4350*x**2 + 9000*x)*exp(x)) + 25/(x**3 - 10
*x**2 + 25*x)
________________________________________________________________________________________