3.89.57 (14+e2x+x2(1+2x2x2))dx

Optimal. Leaf size=13 (14e(2+x)x)x

________________________________________________________________________________________

Rubi [B]  time = 0.02, antiderivative size = 29, normalized size of antiderivative = 2.23, number of steps used = 2, number of rules used = 1, integrand size = 22, number of rulesintegrand size = 0.045, Rules used = {2288} 14xex22x(xx2)1x

Antiderivative was successfully verified.

[In]

Int[14 + E^(-2*x + x^2)*(-1 + 2*x - 2*x^2),x]

[Out]

14*x - (E^(-2*x + x^2)*(x - x^2))/(1 - x)

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=14x+e2x+x2(1+2x2x2)dx=14xe2x+x2(xx2)1x

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 12, normalized size = 0.92 ((14+e(2+x)x)x)

Antiderivative was successfully verified.

[In]

Integrate[14 + E^(-2*x + x^2)*(-1 + 2*x - 2*x^2),x]

[Out]

-((-14 + E^((-2 + x)*x))*x)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 15, normalized size = 1.15 xe(x22x)+14x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2+2*x-1)*exp(x^2-2*x)+14,x, algorithm="fricas")

[Out]

-x*e^(x^2 - 2*x) + 14*x

________________________________________________________________________________________

giac [A]  time = 0.13, size = 15, normalized size = 1.15 xe(x22x)+14x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2+2*x-1)*exp(x^2-2*x)+14,x, algorithm="giac")

[Out]

-x*e^(x^2 - 2*x) + 14*x

________________________________________________________________________________________

maple [A]  time = 0.04, size = 14, normalized size = 1.08




method result size



risch 14xxe(x2)x 14
default 14xxex22x 16
norman 14xxex22x 16



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x^2+2*x-1)*exp(x^2-2*x)+14,x,method=_RETURNVERBOSE)

[Out]

14*x-x*exp((x-2)*x)

________________________________________________________________________________________

maxima [C]  time = 0.42, size = 120, normalized size = 9.23 12iπerf(ixi)e(1)+((x1)3Γ(32,(x1)2)((x1)2)32π(x1)(erf((x1)2)1)(x1)22e((x1)2))e(1)+(π(x1)(erf((x1)2)1)(x1)2+e((x1)2))e(1)+14x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^2+2*x-1)*exp(x^2-2*x)+14,x, algorithm="maxima")

[Out]

1/2*I*sqrt(pi)*erf(I*x - I)*e^(-1) + ((x - 1)^3*gamma(3/2, -(x - 1)^2)/(-(x - 1)^2)^(3/2) - sqrt(pi)*(x - 1)*(
erf(sqrt(-(x - 1)^2)) - 1)/sqrt(-(x - 1)^2) - 2*e^((x - 1)^2))*e^(-1) + (sqrt(pi)*(x - 1)*(erf(sqrt(-(x - 1)^2
)) - 1)/sqrt(-(x - 1)^2) + e^((x - 1)^2))*e^(-1) + 14*x

________________________________________________________________________________________

mupad [B]  time = 5.08, size = 13, normalized size = 1.00 x(ex22x14)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(14 - exp(x^2 - 2*x)*(2*x^2 - 2*x + 1),x)

[Out]

-x*(exp(x^2 - 2*x) - 14)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 12, normalized size = 0.92 xex22x+14x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x**2+2*x-1)*exp(x**2-2*x)+14,x)

[Out]

-x*exp(x**2 - 2*x) + 14*x

________________________________________________________________________________________