3.89.60 ex(3+3x19x210x3)954x+21x2+180x3+100x4dx

Optimal. Leaf size=22 exx39(1x)x+x2

________________________________________________________________________________________

Rubi [C]  time = 1.18, antiderivative size = 503, normalized size of antiderivative = 22.86, number of steps used = 25, number of rules used = 5, integrand size = 43, number of rulesintegrand size = 0.116, Rules used = {6688, 6742, 2177, 2178, 2270} 3(9+201)e120(9+201)Ei(120(20x2019))1340(20111201)e120(9+201)Ei(120(20x2019))402040e120(9+201)Ei(120(20x2019))67201967367e120(9+201)Ei(120(20x2019))+267e120(9+201)Ei(120(20x2019))(201+11201)e120(9201)Ei(120(20x+2019))4020+3(9201)e120(9201)Ei(120(20x+2019))1340+40e120(9201)Ei(120(20x+2019))67201+967367e120(9201)Ei(120(20x+2019))+267e120(9201)Ei(120(20x+2019))+3(9201)ex67(20x201+9)+40ex67(20x201+9)+3(9+201)ex67(20x+201+9)+40ex67(20x+201+9)

Antiderivative was successfully verified.

[In]

Int[(-3 + 3*x - 19*x^2 - 10*x^3)/(E^x*(9 - 54*x + 21*x^2 + 180*x^3 + 100*x^4)),x]

[Out]

40/(67*E^x*(9 - Sqrt[201] + 20*x)) + (3*(9 - Sqrt[201]))/(67*E^x*(9 - Sqrt[201] + 20*x)) + 40/(67*E^x*(9 + Sqr
t[201] + 20*x)) + (3*(9 + Sqrt[201]))/(67*E^x*(9 + Sqrt[201] + 20*x)) + (2*E^((9 + Sqrt[201])/20)*ExpIntegralE
i[(-9 - Sqrt[201] - 20*x)/20])/67 - (9*Sqrt[3/67]*E^((9 + Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)
/20])/67 - (40*E^((9 + Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)/20])/(67*Sqrt[201]) - ((201 - 11*S
qrt[201])*E^((9 + Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)/20])/4020 + (3*(9 + Sqrt[201])*E^((9 +
Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)/20])/1340 + (2*E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 +
 Sqrt[201] - 20*x)/20])/67 + (9*Sqrt[3/67]*E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/6
7 + (40*E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/(67*Sqrt[201]) + (3*(9 - Sqrt[201])*
E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/1340 - ((201 + 11*Sqrt[201])*E^((9 - Sqrt[20
1])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/4020

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2270

Int[((F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))*(u_)^(m_.))/((a_.) + (b_.)*(x_) + (c_)*(x_)^2), x_Symbol] :> Int[
ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] && Poly
nomialQ[u, x] && IntegerQ[m]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=ex(3+3x19x210x3)(39x10x2)2dx=(3ex(2+3x)(3+9x+10x2)2+ex(1x)3+9x+10x2)dx=3ex(2+3x)(3+9x+10x2)2dx+ex(1x)3+9x+10x2dx=3(2ex(3+9x+10x2)2+3exx(3+9x+10x2)2)dx+((111201)ex9201+20x+(1+11201)ex9+201+20x)dx=(6ex(3+9x+10x2)2dx)+9exx(3+9x+10x2)2dx+1201(201+11201)ex9+201+20xdx1201(201+11201)ex9201+20xdx=(20111201)e120(9+201)Ei(120(920120x))4020(201+11201)e120(9201)Ei(120(9+20120x))40206(400ex201(9+20120x)2+400ex201201(9+20120x)+400ex201(9+201+20x)2+400ex201201(9+201+20x))dx+9(20(9+201)ex201(9+20120x)220367ex67(9+20120x)+20(9201)ex201(9+201+20x)220367ex67(9+201+20x))dx=(20111201)e120(9+201)Ei(120(920120x))4020(201+11201)e120(9201)Ei(120(9+20120x))402080067ex(9+20120x)2dx80067ex(9+201+20x)2dx167(180367)ex9+20120xdx167(180367)ex9+201+20xdx800ex9+20120xdx67201800ex9+201+20xdx67201167(60(9201))ex(9+20120x)2dx167(60(9+201))ex(9+201+20x)2dx=40ex67(9201+20x)+3(9201)ex67(9201+20x)+40ex67(9+201+20x)+3(9+201)ex67(9+201+20x)967367e120(9+201)Ei(120(920120x))40e120(9+201)Ei(120(920120x))67201(20111201)e120(9+201)Ei(120(920120x))4020+967367e120(9201)Ei(120(9+20120x))+40e120(9201)Ei(120(9+20120x))67201(201+11201)e120(9201)Ei(120(9+20120x))40204067ex9+20120xdx+4067ex9+201+20xdx167(3(9201))ex9+20120xdx+167(3(9+201))ex9+201+20xdx=40ex67(9201+20x)+3(9201)ex67(9201+20x)+40ex67(9+201+20x)+3(9+201)ex67(9+201+20x)+267e120(9+201)Ei(120(920120x))967367e120(9+201)Ei(120(920120x))40e120(9+201)Ei(120(920120x))67201(20111201)e120(9+201)Ei(120(920120x))4020+3(9+201)e120(9+201)Ei(120(920120x))1340+267e120(9201)Ei(120(9+20120x))+967367e120(9201)Ei(120(9+20120x))+40e120(9201)Ei(120(9+20120x))67201+3(9201)e120(9201)Ei(120(9+20120x))1340(201+11201)e120(9201)Ei(120(9+20120x))4020

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 19, normalized size = 0.86 exx3+9x+10x2

Antiderivative was successfully verified.

[In]

Integrate[(-3 + 3*x - 19*x^2 - 10*x^3)/(E^x*(9 - 54*x + 21*x^2 + 180*x^3 + 100*x^4)),x]

[Out]

x/(E^x*(-3 + 9*x + 10*x^2))

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 18, normalized size = 0.82 xe(x)10x2+9x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x, algorithm="fricas")

[Out]

x*e^(-x)/(10*x^2 + 9*x - 3)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 18, normalized size = 0.82 xe(x)10x2+9x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x, algorithm="giac")

[Out]

x*e^(-x)/(10*x^2 + 9*x - 3)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 19, normalized size = 0.86




method result size



gosper xex10x2+9x3 19
norman xex10x2+9x3 19
risch xex10x2+9x3 19
default ex(20x+9)670x2+603x201+3ex(3x2)67(10x2+9x3)+19ex(47x9)670(10x2+9x3)3ex(171x47)670(10x2+9x3) 94



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x,method=_RETURNVERBOSE)

[Out]

x/exp(x)/(10*x^2+9*x-3)

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 18, normalized size = 0.82 xe(x)10x2+9x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x, algorithm="maxima")

[Out]

x*e^(-x)/(10*x^2 + 9*x - 3)

________________________________________________________________________________________

mupad [B]  time = 0.21, size = 18, normalized size = 0.82 xex10x2+9x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-x)*(19*x^2 - 3*x + 10*x^3 + 3))/(21*x^2 - 54*x + 180*x^3 + 100*x^4 + 9),x)

[Out]

(x*exp(-x))/(9*x + 10*x^2 - 3)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 14, normalized size = 0.64 xex10x2+9x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-10*x**3-19*x**2+3*x-3)/(100*x**4+180*x**3+21*x**2-54*x+9)/exp(x),x)

[Out]

x*exp(-x)/(10*x**2 + 9*x - 3)

________________________________________________________________________________________