Optimal. Leaf size=22 \[ \frac {e^{-x} x}{-3-9 (-1-x) x+x^2} \]
________________________________________________________________________________________
Rubi [C] time = 1.18, antiderivative size = 503, normalized size of antiderivative = 22.86, number of steps used = 25, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {6688, 6742, 2177, 2178, 2270} \begin {gather*} \frac {3 \left (9+\sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x-\sqrt {201}-9\right )\right )}{1340}-\frac {\left (201-11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x-\sqrt {201}-9\right )\right )}{4020}-\frac {40 e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x-\sqrt {201}-9\right )\right )}{67 \sqrt {201}}-\frac {9}{67} \sqrt {\frac {3}{67}} e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x-\sqrt {201}-9\right )\right )+\frac {2}{67} e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x-\sqrt {201}-9\right )\right )-\frac {\left (201+11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x+\sqrt {201}-9\right )\right )}{4020}+\frac {3 \left (9-\sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x+\sqrt {201}-9\right )\right )}{1340}+\frac {40 e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x+\sqrt {201}-9\right )\right )}{67 \sqrt {201}}+\frac {9}{67} \sqrt {\frac {3}{67}} e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x+\sqrt {201}-9\right )\right )+\frac {2}{67} e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-20 x+\sqrt {201}-9\right )\right )+\frac {3 \left (9-\sqrt {201}\right ) e^{-x}}{67 \left (20 x-\sqrt {201}+9\right )}+\frac {40 e^{-x}}{67 \left (20 x-\sqrt {201}+9\right )}+\frac {3 \left (9+\sqrt {201}\right ) e^{-x}}{67 \left (20 x+\sqrt {201}+9\right )}+\frac {40 e^{-x}}{67 \left (20 x+\sqrt {201}+9\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2177
Rule 2178
Rule 2270
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-3+3 x-19 x^2-10 x^3\right )}{\left (3-9 x-10 x^2\right )^2} \, dx\\ &=\int \left (\frac {3 e^{-x} (-2+3 x)}{\left (-3+9 x+10 x^2\right )^2}+\frac {e^{-x} (-1-x)}{-3+9 x+10 x^2}\right ) \, dx\\ &=3 \int \frac {e^{-x} (-2+3 x)}{\left (-3+9 x+10 x^2\right )^2} \, dx+\int \frac {e^{-x} (-1-x)}{-3+9 x+10 x^2} \, dx\\ &=3 \int \left (-\frac {2 e^{-x}}{\left (-3+9 x+10 x^2\right )^2}+\frac {3 e^{-x} x}{\left (-3+9 x+10 x^2\right )^2}\right ) \, dx+\int \left (\frac {\left (-1-\frac {11}{\sqrt {201}}\right ) e^{-x}}{9-\sqrt {201}+20 x}+\frac {\left (-1+\frac {11}{\sqrt {201}}\right ) e^{-x}}{9+\sqrt {201}+20 x}\right ) \, dx\\ &=-\left (6 \int \frac {e^{-x}}{\left (-3+9 x+10 x^2\right )^2} \, dx\right )+9 \int \frac {e^{-x} x}{\left (-3+9 x+10 x^2\right )^2} \, dx+\frac {1}{201} \left (-201+11 \sqrt {201}\right ) \int \frac {e^{-x}}{9+\sqrt {201}+20 x} \, dx-\frac {1}{201} \left (201+11 \sqrt {201}\right ) \int \frac {e^{-x}}{9-\sqrt {201}+20 x} \, dx\\ &=-\frac {\left (201-11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{4020}-\frac {\left (201+11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{4020}-6 \int \left (\frac {400 e^{-x}}{201 \left (-9+\sqrt {201}-20 x\right )^2}+\frac {400 e^{-x}}{201 \sqrt {201} \left (-9+\sqrt {201}-20 x\right )}+\frac {400 e^{-x}}{201 \left (9+\sqrt {201}+20 x\right )^2}+\frac {400 e^{-x}}{201 \sqrt {201} \left (9+\sqrt {201}+20 x\right )}\right ) \, dx+9 \int \left (\frac {20 \left (-9+\sqrt {201}\right ) e^{-x}}{201 \left (-9+\sqrt {201}-20 x\right )^2}-\frac {20 \sqrt {\frac {3}{67}} e^{-x}}{67 \left (-9+\sqrt {201}-20 x\right )}+\frac {20 \left (-9-\sqrt {201}\right ) e^{-x}}{201 \left (9+\sqrt {201}+20 x\right )^2}-\frac {20 \sqrt {\frac {3}{67}} e^{-x}}{67 \left (9+\sqrt {201}+20 x\right )}\right ) \, dx\\ &=-\frac {\left (201-11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{4020}-\frac {\left (201+11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{4020}-\frac {800}{67} \int \frac {e^{-x}}{\left (-9+\sqrt {201}-20 x\right )^2} \, dx-\frac {800}{67} \int \frac {e^{-x}}{\left (9+\sqrt {201}+20 x\right )^2} \, dx-\frac {1}{67} \left (180 \sqrt {\frac {3}{67}}\right ) \int \frac {e^{-x}}{-9+\sqrt {201}-20 x} \, dx-\frac {1}{67} \left (180 \sqrt {\frac {3}{67}}\right ) \int \frac {e^{-x}}{9+\sqrt {201}+20 x} \, dx-\frac {800 \int \frac {e^{-x}}{-9+\sqrt {201}-20 x} \, dx}{67 \sqrt {201}}-\frac {800 \int \frac {e^{-x}}{9+\sqrt {201}+20 x} \, dx}{67 \sqrt {201}}-\frac {1}{67} \left (60 \left (9-\sqrt {201}\right )\right ) \int \frac {e^{-x}}{\left (-9+\sqrt {201}-20 x\right )^2} \, dx-\frac {1}{67} \left (60 \left (9+\sqrt {201}\right )\right ) \int \frac {e^{-x}}{\left (9+\sqrt {201}+20 x\right )^2} \, dx\\ &=\frac {40 e^{-x}}{67 \left (9-\sqrt {201}+20 x\right )}+\frac {3 \left (9-\sqrt {201}\right ) e^{-x}}{67 \left (9-\sqrt {201}+20 x\right )}+\frac {40 e^{-x}}{67 \left (9+\sqrt {201}+20 x\right )}+\frac {3 \left (9+\sqrt {201}\right ) e^{-x}}{67 \left (9+\sqrt {201}+20 x\right )}-\frac {9}{67} \sqrt {\frac {3}{67}} e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )-\frac {40 e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{67 \sqrt {201}}-\frac {\left (201-11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{4020}+\frac {9}{67} \sqrt {\frac {3}{67}} e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )+\frac {40 e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{67 \sqrt {201}}-\frac {\left (201+11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{4020}-\frac {40}{67} \int \frac {e^{-x}}{-9+\sqrt {201}-20 x} \, dx+\frac {40}{67} \int \frac {e^{-x}}{9+\sqrt {201}+20 x} \, dx-\frac {1}{67} \left (3 \left (9-\sqrt {201}\right )\right ) \int \frac {e^{-x}}{-9+\sqrt {201}-20 x} \, dx+\frac {1}{67} \left (3 \left (9+\sqrt {201}\right )\right ) \int \frac {e^{-x}}{9+\sqrt {201}+20 x} \, dx\\ &=\frac {40 e^{-x}}{67 \left (9-\sqrt {201}+20 x\right )}+\frac {3 \left (9-\sqrt {201}\right ) e^{-x}}{67 \left (9-\sqrt {201}+20 x\right )}+\frac {40 e^{-x}}{67 \left (9+\sqrt {201}+20 x\right )}+\frac {3 \left (9+\sqrt {201}\right ) e^{-x}}{67 \left (9+\sqrt {201}+20 x\right )}+\frac {2}{67} e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )-\frac {9}{67} \sqrt {\frac {3}{67}} e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )-\frac {40 e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{67 \sqrt {201}}-\frac {\left (201-11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{4020}+\frac {3 \left (9+\sqrt {201}\right ) e^{\frac {1}{20} \left (9+\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9-\sqrt {201}-20 x\right )\right )}{1340}+\frac {2}{67} e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )+\frac {9}{67} \sqrt {\frac {3}{67}} e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )+\frac {40 e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{67 \sqrt {201}}+\frac {3 \left (9-\sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{1340}-\frac {\left (201+11 \sqrt {201}\right ) e^{\frac {1}{20} \left (9-\sqrt {201}\right )} \text {Ei}\left (\frac {1}{20} \left (-9+\sqrt {201}-20 x\right )\right )}{4020}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 19, normalized size = 0.86 \begin {gather*} \frac {e^{-x} x}{-3+9 x+10 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 18, normalized size = 0.82 \begin {gather*} \frac {x e^{\left (-x\right )}}{10 \, x^{2} + 9 \, x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 0.82 \begin {gather*} \frac {x e^{\left (-x\right )}}{10 \, x^{2} + 9 \, x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.86
method | result | size |
gosper | \(\frac {x \,{\mathrm e}^{-x}}{10 x^{2}+9 x -3}\) | \(19\) |
norman | \(\frac {x \,{\mathrm e}^{-x}}{10 x^{2}+9 x -3}\) | \(19\) |
risch | \(\frac {x \,{\mathrm e}^{-x}}{10 x^{2}+9 x -3}\) | \(19\) |
default | \(\frac {{\mathrm e}^{-x} \left (20 x +9\right )}{670 x^{2}+603 x -201}+\frac {3 \,{\mathrm e}^{-x} \left (3 x -2\right )}{67 \left (10 x^{2}+9 x -3\right )}+\frac {19 \,{\mathrm e}^{-x} \left (47 x -9\right )}{670 \left (10 x^{2}+9 x -3\right )}-\frac {3 \,{\mathrm e}^{-x} \left (171 x -47\right )}{670 \left (10 x^{2}+9 x -3\right )}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 18, normalized size = 0.82 \begin {gather*} \frac {x e^{\left (-x\right )}}{10 \, x^{2} + 9 \, x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 18, normalized size = 0.82 \begin {gather*} \frac {x\,{\mathrm {e}}^{-x}}{10\,x^2+9\,x-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.64 \begin {gather*} \frac {x e^{- x}}{10 x^{2} + 9 x - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________