3.89.60
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [C] time = 1.18, antiderivative size = 503, normalized size of antiderivative = 22.86,
number of steps used = 25, number of rules used = 5, integrand size = 43, = 0.116, Rules used
= {6688, 6742, 2177, 2178, 2270}
Antiderivative was successfully verified.
[In]
Int[(-3 + 3*x - 19*x^2 - 10*x^3)/(E^x*(9 - 54*x + 21*x^2 + 180*x^3 + 100*x^4)),x]
[Out]
40/(67*E^x*(9 - Sqrt[201] + 20*x)) + (3*(9 - Sqrt[201]))/(67*E^x*(9 - Sqrt[201] + 20*x)) + 40/(67*E^x*(9 + Sqr
t[201] + 20*x)) + (3*(9 + Sqrt[201]))/(67*E^x*(9 + Sqrt[201] + 20*x)) + (2*E^((9 + Sqrt[201])/20)*ExpIntegralE
i[(-9 - Sqrt[201] - 20*x)/20])/67 - (9*Sqrt[3/67]*E^((9 + Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)
/20])/67 - (40*E^((9 + Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)/20])/(67*Sqrt[201]) - ((201 - 11*S
qrt[201])*E^((9 + Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)/20])/4020 + (3*(9 + Sqrt[201])*E^((9 +
Sqrt[201])/20)*ExpIntegralEi[(-9 - Sqrt[201] - 20*x)/20])/1340 + (2*E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 +
Sqrt[201] - 20*x)/20])/67 + (9*Sqrt[3/67]*E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/6
7 + (40*E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/(67*Sqrt[201]) + (3*(9 - Sqrt[201])*
E^((9 - Sqrt[201])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/1340 - ((201 + 11*Sqrt[201])*E^((9 - Sqrt[20
1])/20)*ExpIntegralEi[(-9 + Sqrt[201] - 20*x)/20])/4020
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2270
Int[((F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))*(u_)^(m_.))/((a_.) + (b_.)*(x_) + (c_)*(x_)^2), x_Symbol] :> Int[
ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] && Poly
nomialQ[u, x] && IntegerQ[m]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 19, normalized size = 0.86
Antiderivative was successfully verified.
[In]
Integrate[(-3 + 3*x - 19*x^2 - 10*x^3)/(E^x*(9 - 54*x + 21*x^2 + 180*x^3 + 100*x^4)),x]
[Out]
x/(E^x*(-3 + 9*x + 10*x^2))
________________________________________________________________________________________
fricas [A] time = 0.48, size = 18, normalized size = 0.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x, algorithm="fricas")
[Out]
x*e^(-x)/(10*x^2 + 9*x - 3)
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 0.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x, algorithm="giac")
[Out]
x*e^(-x)/(10*x^2 + 9*x - 3)
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 0.86
|
|
|
method |
result |
size |
|
|
|
gosper |
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x,method=_RETURNVERBOSE)
[Out]
x/exp(x)/(10*x^2+9*x-3)
________________________________________________________________________________________
maxima [A] time = 0.44, size = 18, normalized size = 0.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-10*x^3-19*x^2+3*x-3)/(100*x^4+180*x^3+21*x^2-54*x+9)/exp(x),x, algorithm="maxima")
[Out]
x*e^(-x)/(10*x^2 + 9*x - 3)
________________________________________________________________________________________
mupad [B] time = 0.21, size = 18, normalized size = 0.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(-x)*(19*x^2 - 3*x + 10*x^3 + 3))/(21*x^2 - 54*x + 180*x^3 + 100*x^4 + 9),x)
[Out]
(x*exp(-x))/(9*x + 10*x^2 - 3)
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-10*x**3-19*x**2+3*x-3)/(100*x**4+180*x**3+21*x**2-54*x+9)/exp(x),x)
[Out]
x*exp(-x)/(10*x**2 + 9*x - 3)
________________________________________________________________________________________