3.89.61 256e8+2x2656x31681x4+e4+x2(256x+1312x2+512x3)256e8+2x2x1312e4+x2x3+1681x5dx

Optimal. Leaf size=26 xe4+x2+41x216log(x)

________________________________________________________________________________________

Rubi [F]  time = 1.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 256e8+2x2656x31681x4+e4+x2(256x+1312x2+512x3)256e8+2x2x1312e4+x2x3+1681x5dx

Verification is not applicable to the result.

[In]

Int[(-256*E^(8 + 2*x^2) - 656*x^3 - 1681*x^4 + E^(4 + x^2)*(-256*x + 1312*x^2 + 512*x^3))/(256*E^(8 + 2*x^2)*x
 - 1312*E^(4 + x^2)*x^3 + 1681*x^5),x]

[Out]

-Log[x] - 1312*Defer[Int][x^2/(16*E^(4 + x^2) - 41*x^2)^2, x] + 1312*Defer[Int][x^4/(16*E^(4 + x^2) - 41*x^2)^
2, x] - 16*Defer[Int][(16*E^(4 + x^2) - 41*x^2)^(-1), x] + 32*Defer[Int][x^2/(16*E^(4 + x^2) - 41*x^2), x]

Rubi steps

integral=256e8+2x2656x31681x4+e4+x2(256x+1312x2+512x3)x(16e4+x241x2)2dx=(1x+1312x2(1+x2)(16e4+x241x2)2+16(1+2x2)16e4+x241x2)dx=log(x)+161+2x216e4+x241x2dx+1312x2(1+x2)(16e4+x241x2)2dx=log(x)+16(116e4+x241x2+2x216e4+x241x2)dx+1312(x2(16e4+x241x2)2+x4(16e4+x241x2)2)dx=log(x)16116e4+x241x2dx+32x216e4+x241x2dx1312x2(16e4+x241x2)2dx+1312x4(16e4+x241x2)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 25, normalized size = 0.96 16x16e4+x241x2log(x)

Antiderivative was successfully verified.

[In]

Integrate[(-256*E^(8 + 2*x^2) - 656*x^3 - 1681*x^4 + E^(4 + x^2)*(-256*x + 1312*x^2 + 512*x^3))/(256*E^(8 + 2*
x^2)*x - 1312*E^(4 + x^2)*x^3 + 1681*x^5),x]

[Out]

(-16*x)/(16*E^(4 + x^2) - 41*x^2) - Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 39, normalized size = 1.50 (41x216e(x2+4))log(x)16x41x216e(x2+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-256*exp(x^2+4)^2+(512*x^3+1312*x^2-256*x)*exp(x^2+4)-1681*x^4-656*x^3)/(256*x*exp(x^2+4)^2-1312*x^
3*exp(x^2+4)+1681*x^5),x, algorithm="fricas")

[Out]

-((41*x^2 - 16*e^(x^2 + 4))*log(x) - 16*x)/(41*x^2 - 16*e^(x^2 + 4))

________________________________________________________________________________________

giac [A]  time = 0.18, size = 39, normalized size = 1.50 41x2log(x)16e(x2+4)log(x)16x41x216e(x2+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-256*exp(x^2+4)^2+(512*x^3+1312*x^2-256*x)*exp(x^2+4)-1681*x^4-656*x^3)/(256*x*exp(x^2+4)^2-1312*x^
3*exp(x^2+4)+1681*x^5),x, algorithm="giac")

[Out]

-(41*x^2*log(x) - 16*e^(x^2 + 4)*log(x) - 16*x)/(41*x^2 - 16*e^(x^2 + 4))

________________________________________________________________________________________

maple [A]  time = 0.09, size = 25, normalized size = 0.96




method result size



norman 16x41x216ex2+4ln(x) 25
risch 16x41x216ex2+4ln(x) 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-256*exp(x^2+4)^2+(512*x^3+1312*x^2-256*x)*exp(x^2+4)-1681*x^4-656*x^3)/(256*x*exp(x^2+4)^2-1312*x^3*exp(
x^2+4)+1681*x^5),x,method=_RETURNVERBOSE)

[Out]

16*x/(41*x^2-16*exp(x^2+4))-ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 24, normalized size = 0.92 16x41x216e(x2+4)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-256*exp(x^2+4)^2+(512*x^3+1312*x^2-256*x)*exp(x^2+4)-1681*x^4-656*x^3)/(256*x*exp(x^2+4)^2-1312*x^
3*exp(x^2+4)+1681*x^5),x, algorithm="maxima")

[Out]

16*x/(41*x^2 - 16*e^(x^2 + 4)) - log(x)

________________________________________________________________________________________

mupad [B]  time = 5.20, size = 24, normalized size = 0.92 ln(x)16x16ex2+441x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(256*exp(2*x^2 + 8) - exp(x^2 + 4)*(1312*x^2 - 256*x + 512*x^3) + 656*x^3 + 1681*x^4)/(256*x*exp(2*x^2 +
8) - 1312*x^3*exp(x^2 + 4) + 1681*x^5),x)

[Out]

- log(x) - (16*x)/(16*exp(x^2 + 4) - 41*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 20, normalized size = 0.77 16x41x2+16ex2+4log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-256*exp(x**2+4)**2+(512*x**3+1312*x**2-256*x)*exp(x**2+4)-1681*x**4-656*x**3)/(256*x*exp(x**2+4)**
2-1312*x**3*exp(x**2+4)+1681*x**5),x)

[Out]

-16*x/(-41*x**2 + 16*exp(x**2 + 4)) - log(x)

________________________________________________________________________________________