Optimal. Leaf size=26 \[ \frac {x}{-e^{4+x^2}+\frac {41 x^2}{16}}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 1.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-256 e^{8+2 x^2}-656 x^3-1681 x^4+e^{4+x^2} \left (-256 x+1312 x^2+512 x^3\right )}{256 e^{8+2 x^2} x-1312 e^{4+x^2} x^3+1681 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-256 e^{8+2 x^2}-656 x^3-1681 x^4+e^{4+x^2} \left (-256 x+1312 x^2+512 x^3\right )}{x \left (16 e^{4+x^2}-41 x^2\right )^2} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {1312 x^2 \left (-1+x^2\right )}{\left (16 e^{4+x^2}-41 x^2\right )^2}+\frac {16 \left (-1+2 x^2\right )}{16 e^{4+x^2}-41 x^2}\right ) \, dx\\ &=-\log (x)+16 \int \frac {-1+2 x^2}{16 e^{4+x^2}-41 x^2} \, dx+1312 \int \frac {x^2 \left (-1+x^2\right )}{\left (16 e^{4+x^2}-41 x^2\right )^2} \, dx\\ &=-\log (x)+16 \int \left (-\frac {1}{16 e^{4+x^2}-41 x^2}+\frac {2 x^2}{16 e^{4+x^2}-41 x^2}\right ) \, dx+1312 \int \left (-\frac {x^2}{\left (16 e^{4+x^2}-41 x^2\right )^2}+\frac {x^4}{\left (16 e^{4+x^2}-41 x^2\right )^2}\right ) \, dx\\ &=-\log (x)-16 \int \frac {1}{16 e^{4+x^2}-41 x^2} \, dx+32 \int \frac {x^2}{16 e^{4+x^2}-41 x^2} \, dx-1312 \int \frac {x^2}{\left (16 e^{4+x^2}-41 x^2\right )^2} \, dx+1312 \int \frac {x^4}{\left (16 e^{4+x^2}-41 x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 25, normalized size = 0.96 \begin {gather*} -\frac {16 x}{16 e^{4+x^2}-41 x^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 39, normalized size = 1.50 \begin {gather*} -\frac {{\left (41 \, x^{2} - 16 \, e^{\left (x^{2} + 4\right )}\right )} \log \relax (x) - 16 \, x}{41 \, x^{2} - 16 \, e^{\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 39, normalized size = 1.50 \begin {gather*} -\frac {41 \, x^{2} \log \relax (x) - 16 \, e^{\left (x^{2} + 4\right )} \log \relax (x) - 16 \, x}{41 \, x^{2} - 16 \, e^{\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.96
method | result | size |
norman | \(\frac {16 x}{41 x^{2}-16 \,{\mathrm e}^{x^{2}+4}}-\ln \relax (x )\) | \(25\) |
risch | \(\frac {16 x}{41 x^{2}-16 \,{\mathrm e}^{x^{2}+4}}-\ln \relax (x )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 24, normalized size = 0.92 \begin {gather*} \frac {16 \, x}{41 \, x^{2} - 16 \, e^{\left (x^{2} + 4\right )}} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.20, size = 24, normalized size = 0.92 \begin {gather*} -\ln \relax (x)-\frac {16\,x}{16\,{\mathrm {e}}^{x^2+4}-41\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 0.77 \begin {gather*} - \frac {16 x}{- 41 x^{2} + 16 e^{x^{2} + 4}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________