3.89.63
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [B] time = 0.62, antiderivative size = 368, normalized size of antiderivative = 14.72,
number of steps used = 55, number of rules used = 13, integrand size = 132, = 0.098, Rules
used = {2356, 2304, 2295, 2313, 2557, 12, 2296, 2361, 6742, 2330, 2305, 2366, 14}
Antiderivative was successfully verified.
[In]
Int[2*x^2 - 4*x*Log[2] + 2*Log[2]^2 + (3*x^2 - 4*x*Log[2] + Log[2]^2)*Log[x^2/Log[3]^4] + (-12*x + 12*Log[2])*
Log[x^3]*Log[x^2/Log[3]^4] + 12*Log[x^3]^3*Log[x^2/Log[3]^4] + Log[x^3]^4*(2 + Log[x^2/Log[3]^4]) + Log[x^3]^2
*(-4*x + 4*Log[2] + (-4*x + 2*Log[2])*Log[x^2/Log[3]^4]),x]
[Out]
-3888*x - 144*x*Log[2] + 72*x*Log[4] + 1296*x*Log[x^3] - 6*x^2*Log[x^3] + 24*x*Log[2]*Log[x^3] + 6*(x^2 - 2*x*
Log[4])*Log[x^3] - 216*x*Log[x^3]^2 + 24*x*Log[x^3]^3 - 2*x*Log[x^3]^4 - 1944*x*Log[x^2/Log[3]^4] - 9*x^2*Log[
x^2/Log[3]^4] + x^3*Log[x^2/Log[3]^4] + 36*x*Log[2]*Log[x^2/Log[3]^4] - 2*x^2*Log[2]*Log[x^2/Log[3]^4] + x*Log
[2]^2*Log[x^2/Log[3]^4] + 9*(x^2 - 2*x*Log[4])*Log[x^2/Log[3]^4] + 648*x*Log[x^3]*Log[x^2/Log[3]^4] - 108*x*Lo
g[x^3]^2*Log[x^2/Log[3]^4] - 2*x^2*Log[x^3]^2*Log[x^2/Log[3]^4] + 2*x*Log[2]*Log[x^3]^2*Log[x^2/Log[3]^4] + 12
*x*Log[x^3]^3*Log[x^2/Log[3]^4] + 1944*x*(2 + Log[x^2/Log[3]^4]) - 648*x*Log[x^3]*(2 + Log[x^2/Log[3]^4]) + 10
8*x*Log[x^3]^2*(2 + Log[x^2/Log[3]^4]) - 12*x*Log[x^3]^3*(2 + Log[x^2/Log[3]^4]) + x*Log[x^3]^4*(2 + Log[x^2/L
og[3]^4])
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2296
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2305
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
Rule 2313
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a,
b, c, d, e, n, r}, x] && IGtQ[q, 0]
Rule 2330
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))
Rule 2356
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]
Rule 2361
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[SimplifyIntegrand[u/x, x], x],
x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]
Rule 2366
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[Sim
plifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] && !(EqQ[p, 1] && EqQ[a, 0] &&
NeQ[d, 0])
Rule 2557
Int[Log[v_]*Log[w_]*(u_), x_Symbol] :> With[{z = IntHide[u, x]}, Dist[Log[v]*Log[w], z, x] + (-Int[SimplifyInt
egrand[(z*Log[w]*D[v, x])/v, x], x] - Int[SimplifyIntegrand[(z*Log[v]*D[w, x])/w, x], x]) /; InverseFunctionFr
eeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.25, size = 112, normalized size = 4.48
Antiderivative was successfully verified.
[In]
Integrate[2*x^2 - 4*x*Log[2] + 2*Log[2]^2 + (3*x^2 - 4*x*Log[2] + Log[2]^2)*Log[x^2/Log[3]^4] + (-12*x + 12*Lo
g[2])*Log[x^3]*Log[x^2/Log[3]^4] + 12*Log[x^3]^3*Log[x^2/Log[3]^4] + Log[x^3]^4*(2 + Log[x^2/Log[3]^4]) + Log[
x^3]^2*(-4*x + 4*Log[2] + (-4*x + 2*Log[2])*Log[x^2/Log[3]^4]),x]
[Out]
(x*(-4*Log[2]^2 + Log[4]^2 + Log[x^2]*(2*x^2 + 2*Log[2]^2 - x*Log[16] + (-4*x + Log[16])*Log[x^3]^2 + 2*Log[x^
3]^4) - 8*x^2*Log[Log[3]] - 8*Log[2]^2*Log[Log[3]] + x*Log[65536]*Log[Log[3]] + (16*x - Log[65536])*Log[x^3]^2
*Log[Log[3]] - 8*Log[x^3]^4*Log[Log[3]]))/2
________________________________________________________________________________________
fricas [B] time = 0.60, size = 192, normalized size = 7.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(x^2/log(3)^4)+2)*log(x^3)^4+12*log(x^2/log(3)^4)*log(x^3)^3+((2*log(2)-4*x)*log(x^2/log(3)^4)+4
*log(2)-4*x)*log(x^3)^2+(12*log(2)-12*x)*log(x^2/log(3)^4)*log(x^3)+(log(2)^2-4*x*log(2)+3*x^2)*log(x^2/log(3)
^4)+2*log(2)^2-4*x*log(2)+2*x^2,x, algorithm="fricas")
[Out]
1/16*x*log(log(3)^12)^4*log(x^2/log(3)^4) + 3/4*x*log(log(3)^12)^3*log(x^2/log(3)^4)^2 + 81/16*x*log(x^2/log(3
)^4)^5 - 9/2*(x^2 - x*log(2))*log(x^2/log(3)^4)^3 + 1/8*(27*x*log(x^2/log(3)^4)^3 - 4*(x^2 - x*log(2))*log(x^2
/log(3)^4))*log(log(3)^12)^2 + 3/4*(9*x*log(x^2/log(3)^4)^4 - 4*(x^2 - x*log(2))*log(x^2/log(3)^4)^2)*log(log(
3)^12) + (x^3 - 2*x^2*log(2) + x*log(2)^2)*log(x^2/log(3)^4)
________________________________________________________________________________________
giac [B] time = 0.25, size = 114, normalized size = 4.56
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(x^2/log(3)^4)+2)*log(x^3)^4+12*log(x^2/log(3)^4)*log(x^3)^3+((2*log(2)-4*x)*log(x^2/log(3)^4)+4
*log(2)-4*x)*log(x^3)^2+(12*log(2)-12*x)*log(x^2/log(3)^4)*log(x^3)+(log(2)^2-4*x*log(2)+3*x^2)*log(x^2/log(3)
^4)+2*log(2)^2-4*x*log(2)+2*x^2,x, algorithm="giac")
[Out]
-324*x*(log(log(3)) + 2)*log(x)^4 + 162*x*log(x)^5 + 648*x*log(x)^4 - 36*(x^2 - x*log(2))*log(x)^3 + 36*(x^2*(
2*log(log(3)) + 1) - 2*(log(2)*log(log(3)) + log(2))*x)*log(x)^2 - 36*(x^2 - 2*x*log(2))*log(x)^2 + (x^3 - 2*x
^2*log(2) + x*log(2)^2)*log(x^2/log(3)^4)
________________________________________________________________________________________
maple [B] time = 1.57, size = 141, normalized size = 5.64
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((ln(x^2/ln(3)^4)+2)*ln(x^3)^4+12*ln(x^2/ln(3)^4)*ln(x^3)^3+((2*ln(2)-4*x)*ln(x^2/ln(3)^4)+4*ln(2)-4*x)*ln(
x^3)^2+(12*ln(2)-12*x)*ln(x^2/ln(3)^4)*ln(x^3)+(ln(2)^2-4*x*ln(2)+3*x^2)*ln(x^2/ln(3)^4)+2*ln(2)^2-4*x*ln(2)+2
*x^2,x,method=_RETURNVERBOSE)
[Out]
x^3*ln(x^2)-8*x*ln(2)*ln(ln(3))*ln(x^3)^2+2*x*ln(2)*ln(x^2)*ln(x^3)^2-4*x^3*ln(ln(3))+ln(2)^2*ln(x^2)*x-4*ln(2
)^2*ln(ln(3))*x-2*ln(2)*x^2*ln(x^2)+8*x^2*ln(2)*ln(ln(3))+ln(x^3)^4*ln(x^2)*x-4*ln(ln(3))*x*ln(x^3)^4-2*x^2*ln
(x^2)*ln(x^3)^2+8*x^2*ln(ln(3))*ln(x^3)^2
________________________________________________________________________________________
maxima [B] time = 0.48, size = 71, normalized size = 2.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((log(x^2/log(3)^4)+2)*log(x^3)^4+12*log(x^2/log(3)^4)*log(x^3)^3+((2*log(2)-4*x)*log(x^2/log(3)^4)+4
*log(2)-4*x)*log(x^3)^2+(12*log(2)-12*x)*log(x^2/log(3)^4)*log(x^3)+(log(2)^2-4*x*log(2)+3*x^2)*log(x^2/log(3)
^4)+2*log(2)^2-4*x*log(2)+2*x^2,x, algorithm="maxima")
[Out]
x*log(x^3)^4*log(x^2/log(3)^4) - 2*(x^2 - x*log(2))*log(x^3)^2*log(x^2/log(3)^4) + (x^3 - 2*x^2*log(2) + x*log
(2)^2)*log(x^2/log(3)^4)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(12*log(x^3)^3*log(x^2/log(3)^4) - 4*x*log(2) + log(x^2/log(3)^4)*(log(2)^2 - 4*x*log(2) + 3*x^2) + 2*log(2
)^2 + log(x^3)^4*(log(x^2/log(3)^4) + 2) - log(x^3)^2*(4*x - 4*log(2) + log(x^2/log(3)^4)*(4*x - 2*log(2))) +
2*x^2 - log(x^3)*log(x^2/log(3)^4)*(12*x - 12*log(2)),x)
[Out]
int(12*log(x^3)^3*log(x^2/log(3)^4) - 4*x*log(2) + log(x^2/log(3)^4)*(log(2)^2 - 4*x*log(2) + 3*x^2) + 2*log(2
)^2 + log(x^3)^4*(log(x^2/log(3)^4) + 2) - log(x^3)^2*(4*x - 4*log(2) + log(x^2/log(3)^4)*(4*x - 2*log(2))) +
2*x^2 - log(x^3)*log(x^2/log(3)^4)*(12*x - 12*log(2)), x)
________________________________________________________________________________________
sympy [B] time = 0.42, size = 146, normalized size = 5.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((ln(x**2/ln(3)**4)+2)*ln(x**3)**4+12*ln(x**2/ln(3)**4)*ln(x**3)**3+((2*ln(2)-4*x)*ln(x**2/ln(3)**4)+
4*ln(2)-4*x)*ln(x**3)**2+(12*ln(2)-12*x)*ln(x**2/ln(3)**4)*ln(x**3)+(ln(2)**2-4*x*ln(2)+3*x**2)*ln(x**2/ln(3)*
*4)+2*ln(2)**2-4*x*ln(2)+2*x**2,x)
[Out]
-4*x**3*log(log(3)) + 8*x**2*log(2)*log(log(3)) + 2*x*log(x**3)**5/3 - 4*x*log(x**3)**4*log(log(3)) - 4*x*log(
2)**2*log(log(3)) + (-4*x**2/3 + 4*x*log(2)/3)*log(x**3)**3 + (8*x**2*log(log(3)) - 8*x*log(2)*log(log(3)))*lo
g(x**3)**2 + (2*x**3/3 - 4*x**2*log(2)/3 + 2*x*log(2)**2/3)*log(x**3)
________________________________________________________________________________________