Optimal. Leaf size=22 \[ 1+\frac {-2+e+\frac {x}{2 (4+x)}}{4 x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 36, normalized size of antiderivative = 1.64, number of steps used = 5, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {1594, 27, 12, 1820} \begin {gather*} -\frac {2-e}{4 x^3}+\frac {1}{32 x^2}+\frac {1}{128 (x+4)}-\frac {1}{128 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1820
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {192+88 x+9 x^2+e \left (-96-48 x-6 x^2\right )}{x^4 \left (128+64 x+8 x^2\right )} \, dx\\ &=\int \frac {192+88 x+9 x^2+e \left (-96-48 x-6 x^2\right )}{8 x^4 (4+x)^2} \, dx\\ &=\frac {1}{8} \int \frac {192+88 x+9 x^2+e \left (-96-48 x-6 x^2\right )}{x^4 (4+x)^2} \, dx\\ &=\frac {1}{8} \int \left (-\frac {6 (-2+e)}{x^4}-\frac {1}{2 x^3}+\frac {1}{16 x^2}-\frac {1}{16 (4+x)^2}\right ) \, dx\\ &=-\frac {2-e}{4 x^3}+\frac {1}{32 x^2}-\frac {1}{128 x}+\frac {1}{128 (4+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 1.05 \begin {gather*} \frac {-16-3 x+2 e (4+x)}{8 x^3 (4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 25, normalized size = 1.14 \begin {gather*} \frac {2 \, {\left (x + 4\right )} e - 3 \, x - 16}{8 \, {\left (x^{4} + 4 \, x^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 25, normalized size = 1.14 \begin {gather*} \frac {1}{128 \, {\left (x + 4\right )}} - \frac {x^{2} - 4 \, x - 32 \, e + 64}{128 \, x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 1.00
method | result | size |
norman | \(\frac {\left (\frac {{\mathrm e}}{4}-\frac {3}{8}\right ) x -2+{\mathrm e}}{x^{3} \left (4+x \right )}\) | \(22\) |
risch | \(\frac {\left (\frac {{\mathrm e}}{4}-\frac {3}{8}\right ) x -2+{\mathrm e}}{x^{3} \left (4+x \right )}\) | \(22\) |
gosper | \(\frac {2 x \,{\mathrm e}+8 \,{\mathrm e}-3 x -16}{8 x^{3} \left (4+x \right )}\) | \(25\) |
default | \(-\frac {-6 \,{\mathrm e}+12}{24 x^{3}}+\frac {1}{32 x^{2}}-\frac {1}{128 x}+\frac {1}{512+128 x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 27, normalized size = 1.23 \begin {gather*} \frac {x {\left (2 \, e - 3\right )} + 8 \, e - 16}{8 \, {\left (x^{4} + 4 \, x^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 24, normalized size = 1.09 \begin {gather*} \frac {\mathrm {e}+x\,\left (\frac {\mathrm {e}}{4}-\frac {3}{8}\right )-2}{x^4+4\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 24, normalized size = 1.09 \begin {gather*} \frac {x \left (-3 + 2 e\right ) - 16 + 8 e}{8 x^{4} + 32 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________