Optimal. Leaf size=26 \[ e^{x+x \left (\frac {\left (x+x^2\right )^2}{x^2}+\log \left (\frac {x^2}{e^3}\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 20, normalized size of antiderivative = 0.77, number of steps used = 1, number of rules used = 1, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6706} \begin {gather*} e^{x^3+2 x^2-x} \left (x^2\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-x+2 x^2+x^3} \left (x^2\right )^x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 20, normalized size = 0.77 \begin {gather*} e^{-x+2 x^2+x^3} \left (x^2\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 22, normalized size = 0.85 \begin {gather*} e^{\left (x^{3} + 2 \, x^{2} + x \log \left (x^{2} e^{\left (-3\right )}\right ) + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 22, normalized size = 0.85 \begin {gather*} e^{\left (x^{3} + 2 \, x^{2} + x \log \left (x^{2} e^{\left (-3\right )}\right ) + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 0.81
method | result | size |
risch | \(\left ({\mathrm e}^{-3} x^{2}\right )^{x} {\mathrm e}^{x \left (x^{2}+2 x +2\right )}\) | \(21\) |
derivativedivides | \({\mathrm e}^{x \ln \left ({\mathrm e}^{-3} x^{2}\right )+x^{3}+2 x^{2}+2 x}\) | \(25\) |
default | \({\mathrm e}^{x \ln \left ({\mathrm e}^{-3} x^{2}\right )+x^{3}+2 x^{2}+2 x}\) | \(25\) |
norman | \({\mathrm e}^{x \ln \left ({\mathrm e}^{-3} x^{2}\right )+x^{3}+2 x^{2}+2 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 22, normalized size = 0.85 \begin {gather*} e^{\left (x^{3} + 2 \, x^{2} + x \log \left (x^{2} e^{\left (-3\right )}\right ) + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.19, size = 20, normalized size = 0.77 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{2\,x^2}\,{\left (x^2\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.85 \begin {gather*} e^{x^{3} + 2 x^{2} + x \log {\left (\frac {x^{2}}{e^{3}} \right )} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________