3.89.65 e2x+2x2+x3+xlog(x2e3)(4+4x+3x2+log(x2e3))dx

Optimal. Leaf size=26 ex+x((x+x2)2x2+log(x2e3))

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 20, normalized size of antiderivative = 0.77, number of steps used = 1, number of rules used = 1, integrand size = 43, number of rulesintegrand size = 0.023, Rules used = {6706} ex3+2x2x(x2)x

Antiderivative was successfully verified.

[In]

Int[E^(2*x + 2*x^2 + x^3 + x*Log[x^2/E^3])*(4 + 4*x + 3*x^2 + Log[x^2/E^3]),x]

[Out]

E^(-x + 2*x^2 + x^3)*(x^2)^x

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=ex+2x2+x3(x2)x

________________________________________________________________________________________

Mathematica [A]  time = 0.36, size = 20, normalized size = 0.77 ex+2x2+x3(x2)x

Antiderivative was successfully verified.

[In]

Integrate[E^(2*x + 2*x^2 + x^3 + x*Log[x^2/E^3])*(4 + 4*x + 3*x^2 + Log[x^2/E^3]),x]

[Out]

E^(-x + 2*x^2 + x^3)*(x^2)^x

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 22, normalized size = 0.85 e(x3+2x2+xlog(x2e(3))+2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x^2/exp(3))+3*x^2+4*x+4)*exp(x*log(x^2/exp(3))+x^3+2*x^2+2*x),x, algorithm="fricas")

[Out]

e^(x^3 + 2*x^2 + x*log(x^2*e^(-3)) + 2*x)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 22, normalized size = 0.85 e(x3+2x2+xlog(x2e(3))+2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x^2/exp(3))+3*x^2+4*x+4)*exp(x*log(x^2/exp(3))+x^3+2*x^2+2*x),x, algorithm="giac")

[Out]

e^(x^3 + 2*x^2 + x*log(x^2*e^(-3)) + 2*x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 21, normalized size = 0.81




method result size



risch (e3x2)xex(x2+2x+2) 21
derivativedivides exln(e3x2)+x3+2x2+2x 25
default exln(e3x2)+x3+2x2+2x 25
norman exln(e3x2)+x3+2x2+2x 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(x^2/exp(3))+3*x^2+4*x+4)*exp(x*ln(x^2/exp(3))+x^3+2*x^2+2*x),x,method=_RETURNVERBOSE)

[Out]

(exp(-3)*x^2)^x*exp(x*(x^2+2*x+2))

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 22, normalized size = 0.85 e(x3+2x2+xlog(x2e(3))+2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x^2/exp(3))+3*x^2+4*x+4)*exp(x*log(x^2/exp(3))+x^3+2*x^2+2*x),x, algorithm="maxima")

[Out]

e^(x^3 + 2*x^2 + x*log(x^2*e^(-3)) + 2*x)

________________________________________________________________________________________

mupad [B]  time = 5.19, size = 20, normalized size = 0.77 exex3e2x2(x2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(2*x + 2*x^2 + x^3 + x*log(x^2*exp(-3)))*(4*x + log(x^2*exp(-3)) + 3*x^2 + 4),x)

[Out]

exp(-x)*exp(x^3)*exp(2*x^2)*(x^2)^x

________________________________________________________________________________________

sympy [A]  time = 0.30, size = 22, normalized size = 0.85 ex3+2x2+xlog(x2e3)+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(x**2/exp(3))+3*x**2+4*x+4)*exp(x*ln(x**2/exp(3))+x**3+2*x**2+2*x),x)

[Out]

exp(x**3 + 2*x**2 + x*log(x**2*exp(-3)) + 2*x)

________________________________________________________________________________________