3.89.66 9+288x2+(6192x2)log(x)+(1+32x2)log2(x)+e153log(5)+5log(x)3+log(x)(144x224x2log(5)+96x2log(x)16x2log2(x))+e2(153log(5)+5log(x))3+log(x)(18x2+6x2log(5)12x2log(x)+2x2log2(x))9x6xlog(x)+xlog2(x)dx

Optimal. Leaf size=30 7+(4x+e5+3log(5)3log(x)x)2log(x)

________________________________________________________________________________________

Rubi [F]  time = 6.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 9+288x2+(6192x2)log(x)+(1+32x2)log2(x)+e153log(5)+5log(x)3+log(x)(144x224x2log(5)+96x2log(x)16x2log2(x))+e2(153log(5)+5log(x))3+log(x)(18x2+6x2log(5)12x2log(x)+2x2log2(x))9x6xlog(x)+xlog2(x)dx

Verification is not applicable to the result.

[In]

Int[(-9 + 288*x^2 + (6 - 192*x^2)*Log[x] + (-1 + 32*x^2)*Log[x]^2 + E^((-15 - 3*Log[5] + 5*Log[x])/(-3 + Log[x
]))*(-144*x^2 - 24*x^2*Log[5] + 96*x^2*Log[x] - 16*x^2*Log[x]^2) + E^((2*(-15 - 3*Log[5] + 5*Log[x]))/(-3 + Lo
g[x]))*(18*x^2 + 6*x^2*Log[5] - 12*x^2*Log[x] + 2*x^2*Log[x]^2))/(9*x - 6*x*Log[x] + x*Log[x]^2),x]

[Out]

16*x^2 - Log[x] - 16*Defer[Int][x^((2 + Log[x])/(-3 + Log[x]))/(5^(3/(-3 + Log[x]))*E^(15/(-3 + Log[x]))), x]
+ 2*Defer[Int][x^((7 + Log[x])/(-3 + Log[x]))/(5^(6/(-3 + Log[x]))*E^(30/(-3 + Log[x]))), x] - 24*Log[5]*Defer
[Int][x^((2 + Log[x])/(-3 + Log[x]))/(5^(3/(-3 + Log[x]))*E^(15/(-3 + Log[x]))*(-3 + Log[x])^2), x] + 6*Log[5]
*Defer[Int][x^((7 + Log[x])/(-3 + Log[x]))/(5^(6/(-3 + Log[x]))*E^(30/(-3 + Log[x]))*(-3 + Log[x])^2), x]

Rubi steps

integral=9+288x2+(6192x2)log(x)+(1+32x2)log2(x)+e153log(5)+5log(x)3+log(x)(144x224x2log(5)+96x2log(x)16x2log2(x))+e2(153log(5)+5log(x))3+log(x)(18x2+6x2log(5)12x2log(x)+2x2log2(x))x(3log(x))2dx=(9x(3+log(x))2+288x(3+log(x))26(1+32x2)log(x)x(3+log(x))2+(1+32x2)log2(x)x(3+log(x))2+8 533+log(x)e153+log(x)x2+log(x)3+log(x)(18(1+log(5)6)+12log(x)2log2(x))(3log(x))2+2 563+log(x)e303+log(x)x7+log(x)3+log(x)(9(1+log(5)3)6log(x)+log2(x))(3log(x))2)dx=2563+log(x)e303+log(x)x7+log(x)3+log(x)(9(1+log(5)3)6log(x)+log2(x))(3log(x))2dx6(1+32x2)log(x)x(3+log(x))2dx+8533+log(x)e153+log(x)x2+log(x)3+log(x)(18(1+log(5)6)+12log(x)2log2(x))(3log(x))2dx91x(3+log(x))2dx+288x(3+log(x))2dx+(1+32x2)log2(x)x(3+log(x))2dx=288x23log(x)+2(563+log(x)e303+log(x)x7+log(x)3+log(x)+3 563+log(x)e303+log(x)x7+log(x)3+log(x)log(5)(3+log(x))2)dx6(3(1+32x2)x(3+log(x))2+1+32x2x(3+log(x)))dx+8(2533+log(x)e153+log(x)x2+log(x)3+log(x)3 533+log(x)e153+log(x)x2+log(x)3+log(x)log(5)(3+log(x))2)dx9Subst(1x2dx,x,3+log(x))+576x3+log(x)dx+(1+32x2x+9(1+32x2)x(3+log(x))2+6(1+32x2)x(3+log(x)))dx=93log(x)+288x23log(x)+2563+log(x)e303+log(x)x7+log(x)3+log(x)dx+91+32x2x(3+log(x))2dx16533+log(x)e153+log(x)x2+log(x)3+log(x)dx181+32x2x(3+log(x))2dx+576Subst(e2x3+xdx,x,log(x))+(6log(5))563+log(x)e303+log(x)x7+log(x)3+log(x)(3+log(x))2dx(24log(5))533+log(x)e153+log(x)x2+log(x)3+log(x)(3+log(x))2dx+1+32x2xdx=576e6Ei(2(3log(x)))93log(x)+288x23log(x)+2563+log(x)e303+log(x)x7+log(x)3+log(x)dx+9(1x(3+log(x))2+32x(3+log(x))2)dx16533+log(x)e153+log(x)x2+log(x)3+log(x)dx18(1x(3+log(x))2+32x(3+log(x))2)dx+(6log(5))563+log(x)e303+log(x)x7+log(x)3+log(x)(3+log(x))2dx(24log(5))533+log(x)e153+log(x)x2+log(x)3+log(x)(3+log(x))2dx+(1x+32x)dx=16x2+576e6Ei(2(3log(x)))93log(x)+288x23log(x)log(x)+2563+log(x)e303+log(x)x7+log(x)3+log(x)dx91x(3+log(x))2dx16533+log(x)e153+log(x)x2+log(x)3+log(x)dx+181x(3+log(x))2dx+288x(3+log(x))2dx576x(3+log(x))2dx+(6log(5))563+log(x)e303+log(x)x7+log(x)3+log(x)(3+log(x))2dx(24log(5))533+log(x)e153+log(x)x2+log(x)3+log(x)(3+log(x))2dx=16x2+576e6Ei(2(3log(x)))93log(x)log(x)+2563+log(x)e303+log(x)x7+log(x)3+log(x)dx9Subst(1x2dx,x,3+log(x))16533+log(x)e153+log(x)x2+log(x)3+log(x)dx+18Subst(1x2dx,x,3+log(x))+576x3+log(x)dx1152x3+log(x)dx+(6log(5))563+log(x)e303+log(x)x7+log(x)3+log(x)(3+log(x))2dx(24log(5))533+log(x)e153+log(x)x2+log(x)3+log(x)(3+log(x))2dx=16x2+576e6Ei(2(3log(x)))log(x)+2563+log(x)e303+log(x)x7+log(x)3+log(x)dx16533+log(x)e153+log(x)x2+log(x)3+log(x)dx+576Subst(e2x3+xdx,x,log(x))1152Subst(e2x3+xdx,x,log(x))+(6log(5))563+log(x)e303+log(x)x7+log(x)3+log(x)(3+log(x))2dx(24log(5))533+log(x)e153+log(x)x2+log(x)3+log(x)(3+log(x))2dx=16x2log(x)+2563+log(x)e303+log(x)x7+log(x)3+log(x)dx16533+log(x)e153+log(x)x2+log(x)3+log(x)dx+(6log(5))563+log(x)e303+log(x)x7+log(x)3+log(x)(3+log(x))2dx(24log(5))533+log(x)e153+log(x)x2+log(x)3+log(x)(3+log(x))2dx

________________________________________________________________________________________

Mathematica [F]  time = 0.49, size = 0, normalized size = 0.00 9+288x2+(6192x2)log(x)+(1+32x2)log2(x)+e153log(5)+5log(x)3+log(x)(144x224x2log(5)+96x2log(x)16x2log2(x))+e2(153log(5)+5log(x))3+log(x)(18x2+6x2log(5)12x2log(x)+2x2log2(x))9x6xlog(x)+xlog2(x)dx

Verification is not applicable to the result.

[In]

Integrate[(-9 + 288*x^2 + (6 - 192*x^2)*Log[x] + (-1 + 32*x^2)*Log[x]^2 + E^((-15 - 3*Log[5] + 5*Log[x])/(-3 +
 Log[x]))*(-144*x^2 - 24*x^2*Log[5] + 96*x^2*Log[x] - 16*x^2*Log[x]^2) + E^((2*(-15 - 3*Log[5] + 5*Log[x]))/(-
3 + Log[x]))*(18*x^2 + 6*x^2*Log[5] - 12*x^2*Log[x] + 2*x^2*Log[x]^2))/(9*x - 6*x*Log[x] + x*Log[x]^2),x]

[Out]

Integrate[(-9 + 288*x^2 + (6 - 192*x^2)*Log[x] + (-1 + 32*x^2)*Log[x]^2 + E^((-15 - 3*Log[5] + 5*Log[x])/(-3 +
 Log[x]))*(-144*x^2 - 24*x^2*Log[5] + 96*x^2*Log[x] - 16*x^2*Log[x]^2) + E^((2*(-15 - 3*Log[5] + 5*Log[x]))/(-
3 + Log[x]))*(18*x^2 + 6*x^2*Log[5] - 12*x^2*Log[x] + 2*x^2*Log[x]^2))/(9*x - 6*x*Log[x] + x*Log[x]^2), x]

________________________________________________________________________________________

fricas [B]  time = 0.53, size = 57, normalized size = 1.90 8x2e(3log(5)5log(x)+15log(x)3)+x2e(2(3log(5)5log(x)+15)log(x)3)+16x2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2*log(x)^2-12*x^2*log(x)+6*x^2*log(5)+18*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))^2+(-16*x^
2*log(x)^2+96*x^2*log(x)-24*x^2*log(5)-144*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))+(32*x^2-1)*log(x)^2+(-1
92*x^2+6)*log(x)+288*x^2-9)/(x*log(x)^2-6*x*log(x)+9*x),x, algorithm="fricas")

[Out]

-8*x^2*e^(-(3*log(5) - 5*log(x) + 15)/(log(x) - 3)) + x^2*e^(-2*(3*log(5) - 5*log(x) + 15)/(log(x) - 3)) + 16*
x^2 - log(x)

________________________________________________________________________________________

giac [A]  time = 1.65, size = 50, normalized size = 1.67 40x2e(log(5)log(x)log(x)3+5)+25x2e(2log(5)log(x)log(x)3+10)+16x2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2*log(x)^2-12*x^2*log(x)+6*x^2*log(5)+18*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))^2+(-16*x^
2*log(x)^2+96*x^2*log(x)-24*x^2*log(5)-144*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))+(32*x^2-1)*log(x)^2+(-1
92*x^2+6)*log(x)+288*x^2-9)/(x*log(x)^2-6*x*log(x)+9*x),x, algorithm="giac")

[Out]

-40*x^2*e^(-log(5)*log(x)/(log(x) - 3) + 5) + 25*x^2*e^(-2*log(5)*log(x)/(log(x) - 3) + 10) + 16*x^2 - log(x)

________________________________________________________________________________________

maple [A]  time = 0.64, size = 58, normalized size = 1.93




method result size



risch 16x2ln(x)+x2e2(5ln(x)+3ln(5)+15)ln(x)38x2e5ln(x)+3ln(5)+15ln(x)3 58
default 16x2ln(x)+24x2e5ln(x)+3ln(5)+15ln(x)38ln(x)x2e5ln(x)+3ln(5)+15ln(x)3ln(x)3+ln(x)x2e2(5ln(x)+3ln(5)+15)ln(x)33x2e2(5ln(x)+3ln(5)+15)ln(x)3ln(x)3 126



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^2*ln(x)^2-12*x^2*ln(x)+6*x^2*ln(5)+18*x^2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))^2+(-16*x^2*ln(x)^2+96
*x^2*ln(x)-24*x^2*ln(5)-144*x^2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))+(32*x^2-1)*ln(x)^2+(-192*x^2+6)*ln(x)+288
*x^2-9)/(x*ln(x)^2-6*x*ln(x)+9*x),x,method=_RETURNVERBOSE)

[Out]

16*x^2-ln(x)+x^2*exp(-2*(-5*ln(x)+3*ln(5)+15)/(ln(x)-3))-8*x^2*exp(-(-5*ln(x)+3*ln(5)+15)/(ln(x)-3))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 16x2log(x)48x29log(x)3+9log(x)38(2xlog(x)2+3x(log(5)+6)12xlog(x))e(3log(5)log(x)3+5log(x)log(x)315log(x)3)log(x)26log(x)+9dx+2(xlog(x)2+3x(log(5)+3)6xlog(x))e(6log(5)log(x)3+10log(x)log(x)330log(x)3)log(x)26log(x)+9dxlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2*log(x)^2-12*x^2*log(x)+6*x^2*log(5)+18*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))^2+(-16*x^
2*log(x)^2+96*x^2*log(x)-24*x^2*log(5)-144*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))+(32*x^2-1)*log(x)^2+(-1
92*x^2+6)*log(x)+288*x^2-9)/(x*log(x)^2-6*x*log(x)+9*x),x, algorithm="maxima")

[Out]

(16*x^2*log(x) - 48*x^2 - 9)/(log(x) - 3) + 9/(log(x) - 3) - integrate(8*(2*x*log(x)^2 + 3*x*(log(5) + 6) - 12
*x*log(x))*e^(-3*log(5)/(log(x) - 3) + 5*log(x)/(log(x) - 3) - 15/(log(x) - 3))/(log(x)^2 - 6*log(x) + 9), x)
+ integrate(2*(x*log(x)^2 + 3*x*(log(5) + 3) - 6*x*log(x))*e^(-6*log(5)/(log(x) - 3) + 10*log(x)/(log(x) - 3)
- 30/(log(x) - 3))/(log(x)^2 - 6*log(x) + 9), x) - log(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 e2(3ln(5)5ln(x)+15)ln(x)3(2x2ln(x)212x2ln(x)+6x2ln(5)+18x2)e3ln(5)5ln(x)+15ln(x)3(16x2ln(x)296x2ln(x)+24x2ln(5)+144x2)+ln(x)2(32x21)+288x2ln(x)(192x26)9xln(x)26xln(x)+9xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-(2*(3*log(5) - 5*log(x) + 15))/(log(x) - 3))*(2*x^2*log(x)^2 - 12*x^2*log(x) + 6*x^2*log(5) + 18*x^2
) - exp(-(3*log(5) - 5*log(x) + 15)/(log(x) - 3))*(16*x^2*log(x)^2 - 96*x^2*log(x) + 24*x^2*log(5) + 144*x^2)
+ log(x)^2*(32*x^2 - 1) + 288*x^2 - log(x)*(192*x^2 - 6) - 9)/(9*x + x*log(x)^2 - 6*x*log(x)),x)

[Out]

int((exp(-(2*(3*log(5) - 5*log(x) + 15))/(log(x) - 3))*(2*x^2*log(x)^2 - 12*x^2*log(x) + 6*x^2*log(5) + 18*x^2
) - exp(-(3*log(5) - 5*log(x) + 15)/(log(x) - 3))*(16*x^2*log(x)^2 - 96*x^2*log(x) + 24*x^2*log(5) + 144*x^2)
+ log(x)^2*(32*x^2 - 1) + 288*x^2 - log(x)*(192*x^2 - 6) - 9)/(9*x + x*log(x)^2 - 6*x*log(x)), x)

________________________________________________________________________________________

sympy [B]  time = 3.14, size = 53, normalized size = 1.77 x2e2(5log(x)153log(5))log(x)38x2e5log(x)153log(5)log(x)3+16x2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**2*ln(x)**2-12*x**2*ln(x)+6*x**2*ln(5)+18*x**2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))**2+(-16*x*
*2*ln(x)**2+96*x**2*ln(x)-24*x**2*ln(5)-144*x**2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))+(32*x**2-1)*ln(x)**2+(-1
92*x**2+6)*ln(x)+288*x**2-9)/(x*ln(x)**2-6*x*ln(x)+9*x),x)

[Out]

x**2*exp(2*(5*log(x) - 15 - 3*log(5))/(log(x) - 3)) - 8*x**2*exp((5*log(x) - 15 - 3*log(5))/(log(x) - 3)) + 16
*x**2 - log(x)

________________________________________________________________________________________