3.89.66
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [F] time = 6.90, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-9 + 288*x^2 + (6 - 192*x^2)*Log[x] + (-1 + 32*x^2)*Log[x]^2 + E^((-15 - 3*Log[5] + 5*Log[x])/(-3 + Log[x
]))*(-144*x^2 - 24*x^2*Log[5] + 96*x^2*Log[x] - 16*x^2*Log[x]^2) + E^((2*(-15 - 3*Log[5] + 5*Log[x]))/(-3 + Lo
g[x]))*(18*x^2 + 6*x^2*Log[5] - 12*x^2*Log[x] + 2*x^2*Log[x]^2))/(9*x - 6*x*Log[x] + x*Log[x]^2),x]
[Out]
16*x^2 - Log[x] - 16*Defer[Int][x^((2 + Log[x])/(-3 + Log[x]))/(5^(3/(-3 + Log[x]))*E^(15/(-3 + Log[x]))), x]
+ 2*Defer[Int][x^((7 + Log[x])/(-3 + Log[x]))/(5^(6/(-3 + Log[x]))*E^(30/(-3 + Log[x]))), x] - 24*Log[5]*Defer
[Int][x^((2 + Log[x])/(-3 + Log[x]))/(5^(3/(-3 + Log[x]))*E^(15/(-3 + Log[x]))*(-3 + Log[x])^2), x] + 6*Log[5]
*Defer[Int][x^((7 + Log[x])/(-3 + Log[x]))/(5^(6/(-3 + Log[x]))*E^(30/(-3 + Log[x]))*(-3 + Log[x])^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [F] time = 0.49, size = 0, normalized size = 0.00
Verification is not applicable to the result.
[In]
Integrate[(-9 + 288*x^2 + (6 - 192*x^2)*Log[x] + (-1 + 32*x^2)*Log[x]^2 + E^((-15 - 3*Log[5] + 5*Log[x])/(-3 +
Log[x]))*(-144*x^2 - 24*x^2*Log[5] + 96*x^2*Log[x] - 16*x^2*Log[x]^2) + E^((2*(-15 - 3*Log[5] + 5*Log[x]))/(-
3 + Log[x]))*(18*x^2 + 6*x^2*Log[5] - 12*x^2*Log[x] + 2*x^2*Log[x]^2))/(9*x - 6*x*Log[x] + x*Log[x]^2),x]
[Out]
Integrate[(-9 + 288*x^2 + (6 - 192*x^2)*Log[x] + (-1 + 32*x^2)*Log[x]^2 + E^((-15 - 3*Log[5] + 5*Log[x])/(-3 +
Log[x]))*(-144*x^2 - 24*x^2*Log[5] + 96*x^2*Log[x] - 16*x^2*Log[x]^2) + E^((2*(-15 - 3*Log[5] + 5*Log[x]))/(-
3 + Log[x]))*(18*x^2 + 6*x^2*Log[5] - 12*x^2*Log[x] + 2*x^2*Log[x]^2))/(9*x - 6*x*Log[x] + x*Log[x]^2), x]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 57, normalized size = 1.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2*log(x)^2-12*x^2*log(x)+6*x^2*log(5)+18*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))^2+(-16*x^
2*log(x)^2+96*x^2*log(x)-24*x^2*log(5)-144*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))+(32*x^2-1)*log(x)^2+(-1
92*x^2+6)*log(x)+288*x^2-9)/(x*log(x)^2-6*x*log(x)+9*x),x, algorithm="fricas")
[Out]
-8*x^2*e^(-(3*log(5) - 5*log(x) + 15)/(log(x) - 3)) + x^2*e^(-2*(3*log(5) - 5*log(x) + 15)/(log(x) - 3)) + 16*
x^2 - log(x)
________________________________________________________________________________________
giac [A] time = 1.65, size = 50, normalized size = 1.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2*log(x)^2-12*x^2*log(x)+6*x^2*log(5)+18*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))^2+(-16*x^
2*log(x)^2+96*x^2*log(x)-24*x^2*log(5)-144*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))+(32*x^2-1)*log(x)^2+(-1
92*x^2+6)*log(x)+288*x^2-9)/(x*log(x)^2-6*x*log(x)+9*x),x, algorithm="giac")
[Out]
-40*x^2*e^(-log(5)*log(x)/(log(x) - 3) + 5) + 25*x^2*e^(-2*log(5)*log(x)/(log(x) - 3) + 10) + 16*x^2 - log(x)
________________________________________________________________________________________
maple [A] time = 0.64, size = 58, normalized size = 1.93
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^2*ln(x)^2-12*x^2*ln(x)+6*x^2*ln(5)+18*x^2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))^2+(-16*x^2*ln(x)^2+96
*x^2*ln(x)-24*x^2*ln(5)-144*x^2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))+(32*x^2-1)*ln(x)^2+(-192*x^2+6)*ln(x)+288
*x^2-9)/(x*ln(x)^2-6*x*ln(x)+9*x),x,method=_RETURNVERBOSE)
[Out]
16*x^2-ln(x)+x^2*exp(-2*(-5*ln(x)+3*ln(5)+15)/(ln(x)-3))-8*x^2*exp(-(-5*ln(x)+3*ln(5)+15)/(ln(x)-3))
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2*log(x)^2-12*x^2*log(x)+6*x^2*log(5)+18*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))^2+(-16*x^
2*log(x)^2+96*x^2*log(x)-24*x^2*log(5)-144*x^2)*exp((5*log(x)-3*log(5)-15)/(log(x)-3))+(32*x^2-1)*log(x)^2+(-1
92*x^2+6)*log(x)+288*x^2-9)/(x*log(x)^2-6*x*log(x)+9*x),x, algorithm="maxima")
[Out]
(16*x^2*log(x) - 48*x^2 - 9)/(log(x) - 3) + 9/(log(x) - 3) - integrate(8*(2*x*log(x)^2 + 3*x*(log(5) + 6) - 12
*x*log(x))*e^(-3*log(5)/(log(x) - 3) + 5*log(x)/(log(x) - 3) - 15/(log(x) - 3))/(log(x)^2 - 6*log(x) + 9), x)
+ integrate(2*(x*log(x)^2 + 3*x*(log(5) + 3) - 6*x*log(x))*e^(-6*log(5)/(log(x) - 3) + 10*log(x)/(log(x) - 3)
- 30/(log(x) - 3))/(log(x)^2 - 6*log(x) + 9), x) - log(x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-(2*(3*log(5) - 5*log(x) + 15))/(log(x) - 3))*(2*x^2*log(x)^2 - 12*x^2*log(x) + 6*x^2*log(5) + 18*x^2
) - exp(-(3*log(5) - 5*log(x) + 15)/(log(x) - 3))*(16*x^2*log(x)^2 - 96*x^2*log(x) + 24*x^2*log(5) + 144*x^2)
+ log(x)^2*(32*x^2 - 1) + 288*x^2 - log(x)*(192*x^2 - 6) - 9)/(9*x + x*log(x)^2 - 6*x*log(x)),x)
[Out]
int((exp(-(2*(3*log(5) - 5*log(x) + 15))/(log(x) - 3))*(2*x^2*log(x)^2 - 12*x^2*log(x) + 6*x^2*log(5) + 18*x^2
) - exp(-(3*log(5) - 5*log(x) + 15)/(log(x) - 3))*(16*x^2*log(x)^2 - 96*x^2*log(x) + 24*x^2*log(5) + 144*x^2)
+ log(x)^2*(32*x^2 - 1) + 288*x^2 - log(x)*(192*x^2 - 6) - 9)/(9*x + x*log(x)^2 - 6*x*log(x)), x)
________________________________________________________________________________________
sympy [B] time = 3.14, size = 53, normalized size = 1.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**2*ln(x)**2-12*x**2*ln(x)+6*x**2*ln(5)+18*x**2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))**2+(-16*x*
*2*ln(x)**2+96*x**2*ln(x)-24*x**2*ln(5)-144*x**2)*exp((5*ln(x)-3*ln(5)-15)/(ln(x)-3))+(32*x**2-1)*ln(x)**2+(-1
92*x**2+6)*ln(x)+288*x**2-9)/(x*ln(x)**2-6*x*ln(x)+9*x),x)
[Out]
x**2*exp(2*(5*log(x) - 15 - 3*log(5))/(log(x) - 3)) - 8*x**2*exp((5*log(x) - 15 - 3*log(5))/(log(x) - 3)) + 16
*x**2 - log(x)
________________________________________________________________________________________