3.89.68
Optimal. Leaf size=19
________________________________________________________________________________________
Rubi [B] time = 1.37, antiderivative size = 93, normalized size of antiderivative = 4.89,
number of steps used = 5, number of rules used = 4, integrand size = 106, = 0.038, Rules used
= {6688, 6742, 6684, 2288}
Antiderivative was successfully verified.
[In]
Int[(4*E^(5*x) + E^(24*x) + (4*E^(5*x)*x + E^(24*x)*x)*Log[x] + (E^(24*x)*(-95*x + 19*x^2)*Log[x] + 19*E^(24*x
)*x*Log[x]*Log[Log[x]])*Log[5 - x - Log[Log[x]]])/(E^(5*x)*(-5*x + x^2)*Log[x] + E^(5*x)*x*Log[x]*Log[Log[x]])
,x]
[Out]
4*Log[5 - x - Log[Log[x]]] + (E^(19*x)*(5*x*Log[x]*Log[5 - x - Log[Log[x]]] - x^2*Log[x]*Log[5 - x - Log[Log[x
]]] - x*Log[x]*Log[Log[x]]*Log[5 - x - Log[Log[x]]]))/(x*Log[x]*(5 - x - Log[Log[x]]))
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 6684
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 19, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(4*E^(5*x) + E^(24*x) + (4*E^(5*x)*x + E^(24*x)*x)*Log[x] + (E^(24*x)*(-95*x + 19*x^2)*Log[x] + 19*E
^(24*x)*x*Log[x]*Log[Log[x]])*Log[5 - x - Log[Log[x]]])/(E^(5*x)*(-5*x + x^2)*Log[x] + E^(5*x)*x*Log[x]*Log[Lo
g[x]]),x]
[Out]
(4 + E^(19*x))*Log[5 - x - Log[Log[x]]]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 18, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((19*x*exp(24*x)*log(x)*log(log(x))+(19*x^2-95*x)*exp(24*x)*log(x))*log(-log(log(x))+5-x)+(x*exp(24*
x)+4*x*exp(5*x))*log(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*log(x)*log(log(x))+(x^2-5*x)*exp(5*x)*log(x)),x, alg
orithm="fricas")
[Out]
(e^(19*x) + 4)*log(-x - log(log(x)) + 5)
________________________________________________________________________________________
giac [A] time = 0.25, size = 26, normalized size = 1.37
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((19*x*exp(24*x)*log(x)*log(log(x))+(19*x^2-95*x)*exp(24*x)*log(x))*log(-log(log(x))+5-x)+(x*exp(24*
x)+4*x*exp(5*x))*log(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*log(x)*log(log(x))+(x^2-5*x)*exp(5*x)*log(x)),x, alg
orithm="giac")
[Out]
e^(19*x)*log(-x - log(log(x)) + 5) + 4*log(x + log(log(x)) - 5)
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((19*x*exp(24*x)*ln(x)*ln(ln(x))+(19*x^2-95*x)*exp(24*x)*ln(x))*ln(-ln(ln(x))+5-x)+(x*exp(24*x)+4*x*exp(5*
x))*ln(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*ln(x)*ln(ln(x))+(x^2-5*x)*exp(5*x)*ln(x)),x,method=_RETURNVERBOSE)
[Out]
exp(19*x)*ln(-ln(ln(x))+5-x)+4*ln(ln(ln(x))+x-5)
________________________________________________________________________________________
maxima [A] time = 0.42, size = 18, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((19*x*exp(24*x)*log(x)*log(log(x))+(19*x^2-95*x)*exp(24*x)*log(x))*log(-log(log(x))+5-x)+(x*exp(24*
x)+4*x*exp(5*x))*log(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*log(x)*log(log(x))+(x^2-5*x)*exp(5*x)*log(x)),x, alg
orithm="maxima")
[Out]
(e^(19*x) + 4)*log(-x - log(log(x)) + 5)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(4*exp(5*x) + exp(24*x) - log(5 - log(log(x)) - x)*(exp(24*x)*log(x)*(95*x - 19*x^2) - 19*x*log(log(x))*e
xp(24*x)*log(x)) + log(x)*(4*x*exp(5*x) + x*exp(24*x)))/(exp(5*x)*log(x)*(5*x - x^2) - x*log(log(x))*exp(5*x)*
log(x)),x)
[Out]
-int((4*exp(5*x) + exp(24*x) - log(5 - log(log(x)) - x)*(exp(24*x)*log(x)*(95*x - 19*x^2) - 19*x*log(log(x))*e
xp(24*x)*log(x)) + log(x)*(4*x*exp(5*x) + x*exp(24*x)))/(exp(5*x)*log(x)*(5*x - x^2) - x*log(log(x))*exp(5*x)*
log(x)), x)
________________________________________________________________________________________
sympy [A] time = 13.95, size = 26, normalized size = 1.37
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((19*x*exp(24*x)*ln(x)*ln(ln(x))+(19*x**2-95*x)*exp(24*x)*ln(x))*ln(-ln(ln(x))+5-x)+(x*exp(24*x)+4*x
*exp(5*x))*ln(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*ln(x)*ln(ln(x))+(x**2-5*x)*exp(5*x)*ln(x)),x)
[Out]
exp(19*x)*log(-x - log(log(x)) + 5) + 4*log(x + log(log(x)) - 5)
________________________________________________________________________________________