3.89.68 4e5x+e24x+(4e5xx+e24xx)log(x)+(e24x(95x+19x2)log(x)+19e24xxlog(x)log(log(x)))log(5xlog(log(x)))e5x(5x+x2)log(x)+e5xxlog(x)log(log(x))dx

Optimal. Leaf size=19 (4+e19x)log(5xlog(log(x)))

________________________________________________________________________________________

Rubi [B]  time = 1.37, antiderivative size = 93, normalized size of antiderivative = 4.89, number of steps used = 5, number of rules used = 4, integrand size = 106, number of rulesintegrand size = 0.038, Rules used = {6688, 6742, 6684, 2288} e19x(x2(log(x))log(xlog(log(x))+5)+5xlog(x)log(xlog(log(x))+5)xlog(x)log(log(x))log(xlog(log(x))+5))xlog(x)(xlog(log(x))+5)+4log(xlog(log(x))+5)

Antiderivative was successfully verified.

[In]

Int[(4*E^(5*x) + E^(24*x) + (4*E^(5*x)*x + E^(24*x)*x)*Log[x] + (E^(24*x)*(-95*x + 19*x^2)*Log[x] + 19*E^(24*x
)*x*Log[x]*Log[Log[x]])*Log[5 - x - Log[Log[x]]])/(E^(5*x)*(-5*x + x^2)*Log[x] + E^(5*x)*x*Log[x]*Log[Log[x]])
,x]

[Out]

4*Log[5 - x - Log[Log[x]]] + (E^(19*x)*(5*x*Log[x]*Log[5 - x - Log[Log[x]]] - x^2*Log[x]*Log[5 - x - Log[Log[x
]]] - x*Log[x]*Log[Log[x]]*Log[5 - x - Log[Log[x]]]))/(x*Log[x]*(5 - x - Log[Log[x]]))

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=4e19xxlog(x)(4+e19x+19e19x(5+x+log(log(x)))log(5xlog(log(x))))xlog(x)(5xlog(log(x)))dx=(4(1+xlog(x))xlog(x)(5+x+log(log(x)))+e19x(1+xlog(x)95xlog(x)log(5xlog(log(x)))+19x2log(x)log(5xlog(log(x)))+19xlog(x)log(log(x))log(5xlog(log(x))))xlog(x)(5+x+log(log(x))))dx=41+xlog(x)xlog(x)(5+x+log(log(x)))dx+e19x(1+xlog(x)95xlog(x)log(5xlog(log(x)))+19x2log(x)log(5xlog(log(x)))+19xlog(x)log(log(x))log(5xlog(log(x))))xlog(x)(5+x+log(log(x)))dx=4log(5xlog(log(x)))+e19x(5xlog(x)log(5xlog(log(x)))x2log(x)log(5xlog(log(x)))xlog(x)log(log(x))log(5xlog(log(x))))xlog(x)(5xlog(log(x)))

________________________________________________________________________________________

Mathematica [A]  time = 0.31, size = 19, normalized size = 1.00 (4+e19x)log(5xlog(log(x)))

Antiderivative was successfully verified.

[In]

Integrate[(4*E^(5*x) + E^(24*x) + (4*E^(5*x)*x + E^(24*x)*x)*Log[x] + (E^(24*x)*(-95*x + 19*x^2)*Log[x] + 19*E
^(24*x)*x*Log[x]*Log[Log[x]])*Log[5 - x - Log[Log[x]]])/(E^(5*x)*(-5*x + x^2)*Log[x] + E^(5*x)*x*Log[x]*Log[Lo
g[x]]),x]

[Out]

(4 + E^(19*x))*Log[5 - x - Log[Log[x]]]

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 18, normalized size = 0.95 (e(19x)+4)log(xlog(log(x))+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((19*x*exp(24*x)*log(x)*log(log(x))+(19*x^2-95*x)*exp(24*x)*log(x))*log(-log(log(x))+5-x)+(x*exp(24*
x)+4*x*exp(5*x))*log(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*log(x)*log(log(x))+(x^2-5*x)*exp(5*x)*log(x)),x, alg
orithm="fricas")

[Out]

(e^(19*x) + 4)*log(-x - log(log(x)) + 5)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 26, normalized size = 1.37 e(19x)log(xlog(log(x))+5)+4log(x+log(log(x))5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((19*x*exp(24*x)*log(x)*log(log(x))+(19*x^2-95*x)*exp(24*x)*log(x))*log(-log(log(x))+5-x)+(x*exp(24*
x)+4*x*exp(5*x))*log(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*log(x)*log(log(x))+(x^2-5*x)*exp(5*x)*log(x)),x, alg
orithm="giac")

[Out]

e^(19*x)*log(-x - log(log(x)) + 5) + 4*log(x + log(log(x)) - 5)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 27, normalized size = 1.42




method result size



risch e19xln(ln(ln(x))+5x)+4ln(ln(ln(x))+x5) 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((19*x*exp(24*x)*ln(x)*ln(ln(x))+(19*x^2-95*x)*exp(24*x)*ln(x))*ln(-ln(ln(x))+5-x)+(x*exp(24*x)+4*x*exp(5*
x))*ln(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*ln(x)*ln(ln(x))+(x^2-5*x)*exp(5*x)*ln(x)),x,method=_RETURNVERBOSE)

[Out]

exp(19*x)*ln(-ln(ln(x))+5-x)+4*ln(ln(ln(x))+x-5)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 18, normalized size = 0.95 (e(19x)+4)log(xlog(log(x))+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((19*x*exp(24*x)*log(x)*log(log(x))+(19*x^2-95*x)*exp(24*x)*log(x))*log(-log(log(x))+5-x)+(x*exp(24*
x)+4*x*exp(5*x))*log(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*log(x)*log(log(x))+(x^2-5*x)*exp(5*x)*log(x)),x, alg
orithm="maxima")

[Out]

(e^(19*x) + 4)*log(-x - log(log(x)) + 5)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 4e5x+e24xln(5ln(ln(x))x)(e24xln(x)(95x19x2)19xln(ln(x))e24xln(x))+ln(x)(4xe5x+xe24x)e5xln(x)(5xx2)xln(ln(x))e5xln(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*exp(5*x) + exp(24*x) - log(5 - log(log(x)) - x)*(exp(24*x)*log(x)*(95*x - 19*x^2) - 19*x*log(log(x))*e
xp(24*x)*log(x)) + log(x)*(4*x*exp(5*x) + x*exp(24*x)))/(exp(5*x)*log(x)*(5*x - x^2) - x*log(log(x))*exp(5*x)*
log(x)),x)

[Out]

-int((4*exp(5*x) + exp(24*x) - log(5 - log(log(x)) - x)*(exp(24*x)*log(x)*(95*x - 19*x^2) - 19*x*log(log(x))*e
xp(24*x)*log(x)) + log(x)*(4*x*exp(5*x) + x*exp(24*x)))/(exp(5*x)*log(x)*(5*x - x^2) - x*log(log(x))*exp(5*x)*
log(x)), x)

________________________________________________________________________________________

sympy [A]  time = 13.95, size = 26, normalized size = 1.37 e19xlog(xlog(log(x))+5)+4log(x+log(log(x))5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((19*x*exp(24*x)*ln(x)*ln(ln(x))+(19*x**2-95*x)*exp(24*x)*ln(x))*ln(-ln(ln(x))+5-x)+(x*exp(24*x)+4*x
*exp(5*x))*ln(x)+exp(24*x)+4*exp(5*x))/(x*exp(5*x)*ln(x)*ln(ln(x))+(x**2-5*x)*exp(5*x)*ln(x)),x)

[Out]

exp(19*x)*log(-x - log(log(x)) + 5) + 4*log(x + log(log(x)) - 5)

________________________________________________________________________________________