3.89.67 31+ex2(25+6x+50x2)+(2+2ex2x)log(e2)9+150x+625x2+(6+50x)log(e2)+log2(e2)dx

Optimal. Leaf size=30 1+ex2+2xx(25+3+log(e2)x)

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 59, normalized size of antiderivative = 1.97, number of steps used = 4, number of rules used = 3, integrand size = 68, number of rulesintegrand size = 0.044, Rules used = {6688, 6742, 2288} ex2(50x2+x(8log(4)))2x(25x+4log(2))233log(4)25(25x+4log(2))

Antiderivative was successfully verified.

[In]

Int[(31 + E^x^2*(-25 + 6*x + 50*x^2) + (2 + 2*E^x^2*x)*Log[E/2])/(9 + 150*x + 625*x^2 + (6 + 50*x)*Log[E/2] +
Log[E/2]^2),x]

[Out]

(E^x^2*(50*x^2 + x*(8 - Log[4])))/(2*x*(4 + 25*x - Log[2])^2) - (33 - Log[4])/(25*(4 + 25*x - Log[2]))

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=33(12log(2)33)+ex2(25+50x2x(8+log(4)))(4+25xlog(2))2dx=(ex2(25+50x2+x(8log(4)))(4+25xlog(2))2+33log(4)(4+25xlog(2))2)dx=33log(4)25(4+25xlog(2))+ex2(25+50x2+x(8log(4)))(4+25xlog(2))2dx=ex2(50x2+x(8log(4)))2x(4+25xlog(2))233log(4)25(4+25xlog(2))

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 45, normalized size = 1.50 25ex2(8+50xlog(4))+2(4+25xlog(2))(33+log(4))50(425x+log(2))2

Antiderivative was successfully verified.

[In]

Integrate[(31 + E^x^2*(-25 + 6*x + 50*x^2) + (2 + 2*E^x^2*x)*Log[E/2])/(9 + 150*x + 625*x^2 + (6 + 50*x)*Log[E
/2] + Log[E/2]^2),x]

[Out]

(25*E^x^2*(8 + 50*x - Log[4]) + 2*(4 + 25*x - Log[2])*(-33 + Log[4]))/(50*(-4 - 25*x + Log[2])^2)

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 25, normalized size = 0.83 25e(x2)+2log(2)3325(25xlog(2)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(x^2)*x+2)*log(1/2*exp(1))+(50*x^2+6*x-25)*exp(x^2)+31)/(log(1/2*exp(1))^2+(50*x+6)*log(1/2*e
xp(1))+625*x^2+150*x+9),x, algorithm="fricas")

[Out]

1/25*(25*e^(x^2) + 2*log(2) - 33)/(25*x - log(2) + 4)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 25, normalized size = 0.83 25e(x2)+2log(2)3325(25xlog(2)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(x^2)*x+2)*log(1/2*exp(1))+(50*x^2+6*x-25)*exp(x^2)+31)/(log(1/2*exp(1))^2+(50*x+6)*log(1/2*e
xp(1))+625*x^2+150*x+9),x, algorithm="giac")

[Out]

1/25*(25*e^(x^2) + 2*log(2) - 33)/(25*x - log(2) + 4)

________________________________________________________________________________________

maple [A]  time = 0.52, size = 23, normalized size = 0.77




method result size



norman ex2+33252ln(2)25ln(2)25x4 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*exp(x^2)*x+2)*ln(1/2*exp(1))+(50*x^2+6*x-25)*exp(x^2)+31)/(ln(1/2*exp(1))^2+(50*x+6)*ln(1/2*exp(1))+62
5*x^2+150*x+9),x,method=_RETURNVERBOSE)

[Out]

(-exp(x^2)+33/25-2/25*ln(2))/(ln(2)-25*x-4)

________________________________________________________________________________________

maxima [A]  time = 0.52, size = 50, normalized size = 1.67 e(x2)25xlog(2)+42log(12e)25(25x+log(12e)+3)3125(25x+log(12e)+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(x^2)*x+2)*log(1/2*exp(1))+(50*x^2+6*x-25)*exp(x^2)+31)/(log(1/2*exp(1))^2+(50*x+6)*log(1/2*e
xp(1))+625*x^2+150*x+9),x, algorithm="maxima")

[Out]

e^(x^2)/(25*x - log(2) + 4) - 2/25*log(1/2*e)/(25*x + log(1/2*e) + 3) - 31/25/(25*x + log(1/2*e) + 3)

________________________________________________________________________________________

mupad [B]  time = 0.25, size = 29, normalized size = 0.97 ln(e24)25ex2+312525x+ln(e2)+3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(exp(1)/2)*(2*x*exp(x^2) + 2) + exp(x^2)*(6*x + 50*x^2 - 25) + 31)/(150*x + log(exp(1)/2)^2 + log(exp(
1)/2)*(50*x + 6) + 625*x^2 + 9),x)

[Out]

-(log(exp(2)/4)/25 - exp(x^2) + 31/25)/(25*x + log(exp(1)/2) + 3)

________________________________________________________________________________________

sympy [A]  time = 0.26, size = 29, normalized size = 0.97 332log(2)625x25log(2)+100+ex225xlog(2)+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*exp(x**2)*x+2)*ln(1/2*exp(1))+(50*x**2+6*x-25)*exp(x**2)+31)/(ln(1/2*exp(1))**2+(50*x+6)*ln(1/2*
exp(1))+625*x**2+150*x+9),x)

[Out]

-(33 - 2*log(2))/(625*x - 25*log(2) + 100) + exp(x**2)/(25*x - log(2) + 4)

________________________________________________________________________________________