3.89.74
Optimal. Leaf size=20
________________________________________________________________________________________
Rubi [B] time = 0.77, antiderivative size = 48, normalized size of antiderivative = 2.40,
number of steps used = 29, number of rules used = 15, integrand size = 49, = 0.306, Rules used
= {12, 6742, 2288, 6688, 2330, 2298, 2309, 2178, 2320, 2297, 2361, 6496, 2306, 2366, 6482}
Antiderivative was successfully verified.
[In]
Int[((1 + E^x + x)*Log[x] + (-1 - E^x - x + (1 + 2*x + E^x*(1 + x))*Log[x])*Log[x*Log[4]])/(8*Log[x]^2),x]
[Out]
(x*Log[x*Log[4]])/(8*Log[x]) + (E^x*x*Log[x*Log[4]])/(8*Log[x]) + (x^2*Log[x*Log[4]])/(8*Log[x])
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 2297
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
IntegerQ[2*p]
Rule 2298
Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2320
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(x*(d + e*x)^q*(a
+ b*Log[c*x^n])^(p + 1))/(b*n*(p + 1)), x] + (-Dist[(q + 1)/(b*n*(p + 1)), Int[(d + e*x)^q*(a + b*Log[c*x^n])^
(p + 1), x], x] + Dist[(d*q)/(b*n*(p + 1)), Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^(p + 1), x], x]) /; FreeQ
[{a, b, c, d, e, n}, x] && LtQ[p, -1] && GtQ[q, 0]
Rule 2330
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))
Rule 2361
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[SimplifyIntegrand[u/x, x], x],
x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]
Rule 2366
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[Sim
plifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] && !(EqQ[p, 1] && EqQ[a, 0] &&
NeQ[d, 0])
Rule 6482
Int[ExpIntegralEi[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[((a + b*x)*ExpIntegralEi[a + b*x])/b, x] - Simp[E^(a
+ b*x)/b, x] /; FreeQ[{a, b}, x]
Rule 6496
Int[LogIntegral[(b_.)*(x_)]/(x_), x_Symbol] :> -Simp[b*x, x] + Simp[Log[b*x]*LogIntegral[b*x], x] /; FreeQ[b,
x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 20, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[((1 + E^x + x)*Log[x] + (-1 - E^x - x + (1 + 2*x + E^x*(1 + x))*Log[x])*Log[x*Log[4]])/(8*Log[x]^2),
x]
[Out]
(x*(1 + E^x + x)*Log[x*Log[4]])/(8*Log[x])
________________________________________________________________________________________
fricas [A] time = 0.54, size = 34, normalized size = 1.70
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/8*((((x+1)*exp(x)+2*x+1)*log(x)-exp(x)-x-1)*log(2*x*log(2))+(exp(x)+1+x)*log(x))/log(x)^2,x, algor
ithm="fricas")
[Out]
1/8*((x^2 + x*e^x + x)*log(x) + (x^2 + x*e^x + x)*log(2*log(2)))/log(x)
________________________________________________________________________________________
giac [B] time = 0.22, size = 58, normalized size = 2.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/8*((((x+1)*exp(x)+2*x+1)*log(x)-exp(x)-x-1)*log(2*x*log(2))+(exp(x)+1+x)*log(x))/log(x)^2,x, algor
ithm="giac")
[Out]
1/8*(x^2*log(2) + x*e^x*log(2) + x^2*log(x) + x*e^x*log(x) + x^2*log(log(2)) + x*e^x*log(log(2)) + x*log(2) +
x*log(x) + x*log(log(2)))/log(x)
________________________________________________________________________________________
maple [B] time = 0.14, size = 56, normalized size = 2.80
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/8*((((x+1)*exp(x)+2*x+1)*ln(x)-exp(x)-x-1)*ln(2*x*ln(2))+(exp(x)+1+x)*ln(x))/ln(x)^2,x,method=_RETURNVER
BOSE)
[Out]
1/8*x^2+1/8*exp(x)*x+1/8*x+1/16*x*(2*x*ln(2)+2*exp(x)*ln(2)+2*x*ln(ln(2))+2*exp(x)*ln(ln(2))+2*ln(2)+2*ln(ln(2
)))/ln(x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/8*((((x+1)*exp(x)+2*x+1)*log(x)-exp(x)-x-1)*log(2*x*log(2))+(exp(x)+1+x)*log(x))/log(x)^2,x, algor
ithm="maxima")
[Out]
1/8*(x^2*(log(2) + log(log(2))) + x*(log(2) + log(log(2))) + (x*(log(2) + log(log(2))) + x*log(x))*e^x + (x^2
+ x)*log(x))/log(x) + 1/8*Ei(2*log(x)) + 1/8*Ei(log(x)) - 1/8*integrate((x + 1)/log(x), x)
________________________________________________________________________________________
mupad [B] time = 5.38, size = 20, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-((log(2*x*log(2))*(x + exp(x) - log(x)*(2*x + exp(x)*(x + 1) + 1) + 1))/8 - (log(x)*(x + exp(x) + 1))/8)/
log(x)^2,x)
[Out]
(x*(log(2*log(2)) + log(x))*(x + exp(x) + 1))/(8*log(x))
________________________________________________________________________________________
sympy [B] time = 0.36, size = 65, normalized size = 3.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/8*((((x+1)*exp(x)+2*x+1)*ln(x)-exp(x)-x-1)*ln(2*x*ln(2))+(exp(x)+1+x)*ln(x))/ln(x)**2,x)
[Out]
x**2/8 + x/8 + (x*log(x) + x*log(log(2)) + x*log(2))*exp(x)/(8*log(x)) + (x**2*log(log(2)) + x**2*log(2) + x*l
og(log(2)) + x*log(2))/(8*log(x))
________________________________________________________________________________________