3.89.75 10+5log(3)+eex+x(10+5log(3))eex+xdx

Optimal. Leaf size=24 (10+5log(3))(2+log(13e5(eex+x)))

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 16, normalized size of antiderivative = 0.67, number of steps used = 1, number of rules used = 1, integrand size = 30, number of rulesintegrand size = 0.033, Rules used = {6684} 5(2log(3))log(x+eex)

Antiderivative was successfully verified.

[In]

Int[(-10 + 5*Log[3] + E^(E^x + x)*(-10 + 5*Log[3]))/(E^E^x + x),x]

[Out]

-5*(2 - Log[3])*Log[E^E^x + x]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rubi steps

integral=5(2log(3))log(eex+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 14, normalized size = 0.58 5(2+log(3))log(eex+x)

Antiderivative was successfully verified.

[In]

Integrate[(-10 + 5*Log[3] + E^(E^x + x)*(-10 + 5*Log[3]))/(E^E^x + x),x]

[Out]

5*(-2 + Log[3])*Log[E^E^x + x]

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 26, normalized size = 1.08 5xlog(3)+5(log(3)2)log(xex+e(x+ex))+10x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*log(3)-10)*exp(x)*exp(exp(x))+5*log(3)-10)/(x+exp(exp(x))),x, algorithm="fricas")

[Out]

-5*x*log(3) + 5*(log(3) - 2)*log(x*e^x + e^(x + e^x)) + 10*x

________________________________________________________________________________________

giac [B]  time = 0.22, size = 37, normalized size = 1.54 5xlog(3)+5log(3)log(xex+e(x+ex))+10x10log(xex+e(x+ex))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*log(3)-10)*exp(x)*exp(exp(x))+5*log(3)-10)/(x+exp(exp(x))),x, algorithm="giac")

[Out]

-5*x*log(3) + 5*log(3)*log(x*e^x + e^(x + e^x)) + 10*x - 10*log(x*e^x + e^(x + e^x))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 14, normalized size = 0.58




method result size



norman (5ln(3)10)ln(x+eex) 14
risch 5ln(x+eex)ln(3)10ln(x+eex) 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*ln(3)-10)*exp(x)*exp(exp(x))+5*ln(3)-10)/(x+exp(exp(x))),x,method=_RETURNVERBOSE)

[Out]

(5*ln(3)-10)*ln(x+exp(exp(x)))

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 12, normalized size = 0.50 5(log(3)2)log(x+e(ex))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*log(3)-10)*exp(x)*exp(exp(x))+5*log(3)-10)/(x+exp(exp(x))),x, algorithm="maxima")

[Out]

5*(log(3) - 2)*log(x + e^(e^x))

________________________________________________________________________________________

mupad [B]  time = 5.16, size = 13, normalized size = 0.54 ln(x+eex)(5ln(3)10)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*log(3) + exp(exp(x))*exp(x)*(5*log(3) - 10) - 10)/(x + exp(exp(x))),x)

[Out]

log(x + exp(exp(x)))*(5*log(3) - 10)

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 14, normalized size = 0.58 5(2+log(3))log(x+eex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*ln(3)-10)*exp(x)*exp(exp(x))+5*ln(3)-10)/(x+exp(exp(x))),x)

[Out]

5*(-2 + log(3))*log(x + exp(exp(x)))

________________________________________________________________________________________