3.89.76 13(3+3ex+8x+7xlog(x)+xlog2(x))dx

Optimal. Leaf size=23 1+exx+16x(5+log(x))(x+xlog(x))

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.35, number of steps used = 6, number of rules used = 4, integrand size = 25, number of rulesintegrand size = 0.160, Rules used = {12, 2194, 2304, 2305} 5x26+16x2log2(x)+x2log(x)x+ex

Antiderivative was successfully verified.

[In]

Int[(-3 + 3*E^x + 8*x + 7*x*Log[x] + x*Log[x]^2)/3,x]

[Out]

E^x - x + (5*x^2)/6 + x^2*Log[x] + (x^2*Log[x]^2)/6

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rubi steps

integral=13(3+3ex+8x+7xlog(x)+xlog2(x))dx=x+4x23+13xlog2(x)dx+73xlog(x)dx+exdx=exx+3x24+76x2log(x)+16x2log2(x)13xlog(x)dx=exx+5x26+x2log(x)+16x2log2(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 38, normalized size = 1.65 13(3ex3x+5x22+3x2log(x)+12x2log2(x))

Antiderivative was successfully verified.

[In]

Integrate[(-3 + 3*E^x + 8*x + 7*x*Log[x] + x*Log[x]^2)/3,x]

[Out]

(3*E^x - 3*x + (5*x^2)/2 + 3*x^2*Log[x] + (x^2*Log[x]^2)/2)/3

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 26, normalized size = 1.13 16x2log(x)2+x2log(x)+56x2x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*x*log(x)^2+7/3*x*log(x)+exp(x)+8/3*x-1,x, algorithm="fricas")

[Out]

1/6*x^2*log(x)^2 + x^2*log(x) + 5/6*x^2 - x + e^x

________________________________________________________________________________________

giac [A]  time = 0.22, size = 26, normalized size = 1.13 16x2log(x)2+x2log(x)+56x2x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*x*log(x)^2+7/3*x*log(x)+exp(x)+8/3*x-1,x, algorithm="giac")

[Out]

1/6*x^2*log(x)^2 + x^2*log(x) + 5/6*x^2 - x + e^x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 27, normalized size = 1.17




method result size



default x+5x26+x2ln(x)+x2ln(x)26+ex 27
norman x+5x26+x2ln(x)+x2ln(x)26+ex 27
risch x+5x26+x2ln(x)+x2ln(x)26+ex 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*x*ln(x)^2+7/3*x*ln(x)+exp(x)+8/3*x-1,x,method=_RETURNVERBOSE)

[Out]

-x+5/6*x^2+x^2*ln(x)+1/6*x^2*ln(x)^2+exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 35, normalized size = 1.52 112(2log(x)22log(x)+1)x2+76x2log(x)+34x2x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*x*log(x)^2+7/3*x*log(x)+exp(x)+8/3*x-1,x, algorithm="maxima")

[Out]

1/12*(2*log(x)^2 - 2*log(x) + 1)*x^2 + 7/6*x^2*log(x) + 3/4*x^2 - x + e^x

________________________________________________________________________________________

mupad [B]  time = 5.12, size = 26, normalized size = 1.13 exx+x2ln(x)+x2ln(x)26+5x26

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((8*x)/3 + exp(x) + (x*log(x)^2)/3 + (7*x*log(x))/3 - 1,x)

[Out]

exp(x) - x + x^2*log(x) + (x^2*log(x)^2)/6 + (5*x^2)/6

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 27, normalized size = 1.17 x2log(x)26+x2log(x)+5x26x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*x*ln(x)**2+7/3*x*ln(x)+exp(x)+8/3*x-1,x)

[Out]

x**2*log(x)**2/6 + x**2*log(x) + 5*x**2/6 - x + exp(x)

________________________________________________________________________________________