Optimal. Leaf size=25 \[ \frac {4 e^5}{x-\frac {(-3+\log (2))^2}{4 e x^3}} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 4, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6, 1994, 28, 1588} \begin {gather*} \frac {16 e^6 x^3}{4 e x^4-(3-\log (2))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 28
Rule 1588
Rule 1994
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 \left (-432 e x^2-64 e^2 x^6\right )+e^6 x^2 \left (288 \log (2)-48 \log ^2(2)\right )}{81-72 e x^4+16 e^2 x^8+\left (-108+48 e x^4\right ) \log (2)+\left (54-8 e x^4\right ) \log ^2(2)-12 \log ^3(2)+\log ^4(2)} \, dx\\ &=\int \frac {e^5 \left (-432 e x^2-64 e^2 x^6\right )+e^6 x^2 \left (288 \log (2)-48 \log ^2(2)\right )}{16 e^2 x^8-8 e x^4 (3-\log (2))^2+(-3+\log (2))^4} \, dx\\ &=\left (16 e^2\right ) \int \frac {e^5 \left (-432 e x^2-64 e^2 x^6\right )+e^6 x^2 \left (288 \log (2)-48 \log ^2(2)\right )}{\left (16 e^2 x^4-4 e (3-\log (2))^2\right )^2} \, dx\\ &=\frac {16 e^6 x^3}{4 e x^4-(3-\log (2))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 54, normalized size = 2.16 \begin {gather*} \frac {4 e^6 x^3 \left (36-18 \log (2)+4 \log ^2(2)-\log (64)\right )}{\left (9+\log ^2(2)-\log (64)\right ) \left (-9+4 e x^4-\log ^2(2)+\log (64)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 28, normalized size = 1.12 \begin {gather*} \frac {16 \, x^{3} e^{6}}{4 \, x^{4} e - \log \relax (2)^{2} + 6 \, \log \relax (2) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 28, normalized size = 1.12
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{6} x^{3}}{x^{4} {\mathrm e}-\frac {\ln \relax (2)^{2}}{4}+\frac {3 \ln \relax (2)}{2}-\frac {9}{4}}\) | \(28\) |
gosper | \(\frac {16 x^{3} {\mathrm e}^{6}}{4 x^{4} {\mathrm e}-\ln \relax (2)^{2}+6 \ln \relax (2)-9}\) | \(29\) |
norman | \(\frac {16 x^{3} {\mathrm e} \,{\mathrm e}^{5}}{4 x^{4} {\mathrm e}-\ln \relax (2)^{2}+6 \ln \relax (2)-9}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 28, normalized size = 1.12 \begin {gather*} \frac {16 \, x^{3} e^{6}}{4 \, x^{4} e - \log \relax (2)^{2} + 6 \, \log \relax (2) - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 26, normalized size = 1.04 \begin {gather*} \frac {16\,x^3\,{\mathrm {e}}^6}{4\,\mathrm {e}\,x^4+\ln \left (64\right )-{\ln \relax (2)}^2-9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.30, size = 27, normalized size = 1.08 \begin {gather*} \frac {16 x^{3} e^{6}}{4 e x^{4} - 9 - \log {\relax (2 )}^{2} + 6 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________