Optimal. Leaf size=29 \[ \log \left (-2+x-\left (-\frac {e^{-x}}{5}+x\right )^2-\log (4)-\log (2 x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 14.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+e^x \left (-10 x+10 x^2\right )+e^{2 x} \left (25-25 x+50 x^2\right )}{x-10 e^x x^2+e^{2 x} \left (50 x-25 x^2+25 x^3+25 x \log (4)\right )+25 e^{2 x} x \log (2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1-x+2 x^2}{x \left (2-x+x^2+\log (8 x)\right )}+\frac {-1-2 x^3+10 e^x x^4+20 e^x x^2 (1+\log (2))-10 e^x x (1+\log (4))-3 x \left (1+\frac {\log (16)}{3}\right )-2 x \log (2 x)-10 e^x x \log (2 x)+10 e^x x^2 \log (2 x)}{x \left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}\right ) \, dx\\ &=\int \frac {1-x+2 x^2}{x \left (2-x+x^2+\log (8 x)\right )} \, dx+\int \frac {-1-2 x^3+10 e^x x^4+20 e^x x^2 (1+\log (2))-10 e^x x (1+\log (4))-3 x \left (1+\frac {\log (16)}{3}\right )-2 x \log (2 x)-10 e^x x \log (2 x)+10 e^x x^2 \log (2 x)}{x \left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx\\ &=\log \left (2-x+x^2+\log (8 x)\right )+\int \left (\frac {1}{x \left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {2 x^2}{\left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {2 \log (2 x)}{\left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {10 e^x \log (2 x)}{\left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {10 e^x x^3}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {20 e^x x (1+\log (2))}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {10 e^x (-1-\log (4))}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {-3-\log (16)}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}+\frac {10 e^x x \log (2 x)}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )}\right ) \, dx\\ &=\log \left (2-x+x^2+\log (8 x)\right )+2 \int \frac {x^2}{\left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+2 \int \frac {\log (2 x)}{\left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+10 \int \frac {e^x \log (2 x)}{\left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+10 \int \frac {e^x x^3}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+10 \int \frac {e^x x \log (2 x)}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+(20 (1+\log (2))) \int \frac {e^x x}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx-(10 (1+\log (4))) \int \frac {e^x}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+(-3-\log (16)) \int \frac {1}{\left (1-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+50 e^{2 x} (1+\log (2))+25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx+\int \frac {1}{x \left (-1+10 e^x x+25 e^{2 x} x-25 e^{2 x} x^2-50 e^{2 x} (1+\log (2))-25 e^{2 x} \log (2 x)\right ) \left (2-x+x^2+\log (8 x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.64, size = 58, normalized size = 2.00 \begin {gather*} -2 x+\log \left (1+50 e^{2 x}-10 e^x x-25 e^{2 x} x+25 e^{2 x} x^2+25 e^{2 x} \log (4)+25 e^{2 x} \log (2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 41, normalized size = 1.41 \begin {gather*} \log \left ({\left (25 \, {\left (x^{2} - x + 2 \, \log \relax (2) + 2\right )} e^{\left (2 \, x\right )} - 10 \, x e^{x} + 25 \, e^{\left (2 \, x\right )} \log \left (2 \, x\right ) + 1\right )} e^{\left (-2 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 50, normalized size = 1.72 \begin {gather*} -2 \, x + \log \left (25 \, x^{2} e^{\left (2 \, x\right )} - 25 \, x e^{\left (2 \, x\right )} - 10 \, x e^{x} + 75 \, e^{\left (2 \, x\right )} \log \relax (2) + 25 \, e^{\left (2 \, x\right )} \log \relax (x) + 50 \, e^{\left (2 \, x\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 50, normalized size = 1.72
method | result | size |
risch | \(\ln \left (\ln \left (2 x \right )+\frac {\left (25 \,{\mathrm e}^{2 x} x^{2}+50 \ln \relax (2) {\mathrm e}^{2 x}-25 x \,{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x} x +50 \,{\mathrm e}^{2 x}+1\right ) {\mathrm e}^{-2 x}}{25}\right )\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.75, size = 65, normalized size = 2.24 \begin {gather*} -2 \, x + \log \left (x^{2} - x + 3 \, \log \relax (2) + \log \relax (x) + 2\right ) + \log \left (\frac {25 \, {\left (x^{2} - x + 3 \, \log \relax (2) + \log \relax (x) + 2\right )} e^{\left (2 \, x\right )} - 10 \, x e^{x} + 1}{25 \, {\left (x^{2} - x + 3 \, \log \relax (2) + \log \relax (x) + 2\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {2\,x-{\mathrm {e}}^{2\,x}\,\left (50\,x^2-25\,x+25\right )+{\mathrm {e}}^x\,\left (10\,x-10\,x^2\right )}{x-10\,x^2\,{\mathrm {e}}^x+{\mathrm {e}}^{2\,x}\,\left (50\,x+50\,x\,\ln \relax (2)-25\,x^2+25\,x^3\right )+25\,x\,\ln \left (2\,x\right )\,{\mathrm {e}}^{2\,x}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 21.35, size = 80, normalized size = 2.76 \begin {gather*} - 2 x + \log {\left (- \frac {2 x e^{x}}{5 x^{2} - 5 x + 5 \log {\left (2 x \right )} + 10 \log {\relax (2 )} + 10} + e^{2 x} + \frac {1}{25 x^{2} - 25 x + 25 \log {\left (2 x \right )} + 50 \log {\relax (2 )} + 50} \right )} + \log {\left (x^{2} - x + \log {\left (2 x \right )} + 2 \log {\relax (2 )} + 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________