3.89.87
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [B] time = 0.28, antiderivative size = 90, normalized size of antiderivative = 3.21,
number of steps used = 14, number of rules used = 8, integrand size = 94, = 0.085, Rules used
= {14, 2288, 2334, 2353, 2296, 2295, 2305, 2304}
Antiderivative was successfully verified.
[In]
Int[(8*E^(2*x)*x + 12*x^2 + E^x*(-8*x - 8*x^2) + (-10 + 6*x^2 + E^(2*x)*(-2 + 8*x) + E^x*(-4*x - 8*x^2))*Log[x
] + (-5 + x^2 - 2*E^x*x^2 + E^(2*x)*(-1 + 2*x))*Log[x]^2)/x^2,x]
[Out]
20/x + 8*x + (10*Log[x])/x - 2*x*Log[x] + 2*(5/x + 3*x)*Log[x] + (5*Log[x]^2)/x + x*Log[x]^2 + (E^(2*x)*(2 + L
og[x])*(2*x + x*Log[x]))/x^2 - (2*E^x*(2 + Log[x])*(2*x + x*Log[x]))/x
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2296
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2305
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
Rule 2334
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && !(EqQ[q, 1] && EqQ[m, -1])
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 66, normalized size = 2.36
Antiderivative was successfully verified.
[In]
Integrate[(8*E^(2*x)*x + 12*x^2 + E^x*(-8*x - 8*x^2) + (-10 + 6*x^2 + E^(2*x)*(-2 + 8*x) + E^x*(-4*x - 8*x^2))
*Log[x] + (-5 + x^2 - 2*E^x*x^2 + E^(2*x)*(-1 + 2*x))*Log[x]^2)/x^2,x]
[Out]
(4*(5 + E^(2*x) - 2*E^x*x + 2*x^2) + 4*(5 + E^(2*x) - 2*E^x*x + x^2)*Log[x] + (5 + E^(2*x) - 2*E^x*x + x^2)*Lo
g[x]^2)/x
________________________________________________________________________________________
fricas [B] time = 0.46, size = 59, normalized size = 2.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*log(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*log(
x)+8*x*exp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x, algorithm="fricas")
[Out]
((x^2 - 2*x*e^x + e^(2*x) + 5)*log(x)^2 + 8*x^2 - 8*x*e^x + 4*(x^2 - 2*x*e^x + e^(2*x) + 5)*log(x) + 4*e^(2*x)
+ 20)/x
________________________________________________________________________________________
giac [B] time = 0.12, size = 80, normalized size = 2.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*log(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*log(
x)+8*x*exp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x, algorithm="giac")
[Out]
(x^2*log(x)^2 - 2*x*e^x*log(x)^2 + 4*x^2*log(x) - 8*x*e^x*log(x) + e^(2*x)*log(x)^2 + 8*x^2 - 8*x*e^x + 4*e^(2
*x)*log(x) + 5*log(x)^2 + 4*e^(2*x) + 20*log(x) + 20)/x
________________________________________________________________________________________
maple [B] time = 0.10, size = 66, normalized size = 2.36
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*ln(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*ln(x)+8*x*e
xp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x,method=_RETURNVERBOSE)
[Out]
(x^2-2*exp(x)*x+exp(2*x)+5)/x*ln(x)^2+4*(x^2-2*exp(x)*x+exp(2*x)+5)/x*ln(x)+4*(2*x^2-2*exp(x)*x+exp(2*x)+5)/x
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*log(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*log(
x)+8*x*exp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x, algorithm="maxima")
[Out]
6*x*log(x) - 8*e^x*log(x) + 6*x - (2*x*e^x*log(x)^2 - (x^2 + 5)*log(x)^2 - 2*x^2 - (log(x)^2 + 4*log(x))*e^(2*
x) + 2*(x^2 - 5)*log(x) - 10)/x + 10*log(x)/x + 10/x + 8*Ei(2*x) - 8*e^x - 4*integrate(e^(2*x)/x^2, x)
________________________________________________________________________________________
mupad [B] time = 5.35, size = 70, normalized size = 2.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(x)^2*(2*x^2*exp(x) - exp(2*x)*(2*x - 1) - x^2 + 5) - 8*x*exp(2*x) + log(x)*(exp(x)*(4*x + 8*x^2) - e
xp(2*x)*(8*x - 2) - 6*x^2 + 10) + exp(x)*(8*x + 8*x^2) - 12*x^2)/x^2,x)
[Out]
(4*exp(2*x) + 20*log(x) + 5*log(x)^2 + 4*exp(2*x)*log(x) + exp(2*x)*log(x)^2 + 20)/x - 8*exp(x)*log(x) - 8*exp
(x) - 2*exp(x)*log(x)^2 + x*(4*log(x) + log(x)^2 + 8)
________________________________________________________________________________________
sympy [B] time = 0.44, size = 71, normalized size = 2.54
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x-1)*exp(x)**2-2*exp(x)*x**2+x**2-5)*ln(x)**2+((8*x-2)*exp(x)**2+(-8*x**2-4*x)*exp(x)+6*x**2-10
)*ln(x)+8*x*exp(x)**2+(-8*x**2-8*x)*exp(x)+12*x**2)/x**2,x)
[Out]
8*x + (x**2 + 5)*log(x)**2/x + (4*x**2 + 20)*log(x)/x + ((-2*x*log(x)**2 - 8*x*log(x) - 8*x)*exp(x) + (log(x)*
*2 + 4*log(x) + 4)*exp(2*x))/x + 20/x
________________________________________________________________________________________