3.89.87 8e2xx+12x2+ex(8x8x2)+(10+6x2+e2x(2+8x)+ex(4x8x2))log(x)+(5+x22exx2+e2x(1+2x))log2(x)x2dx

Optimal. Leaf size=28 4x+x+(5+(exx)2)(2+log(x))2x

________________________________________________________________________________________

Rubi [B]  time = 0.28, antiderivative size = 90, normalized size of antiderivative = 3.21, number of steps used = 14, number of rules used = 8, integrand size = 94, number of rulesintegrand size = 0.085, Rules used = {14, 2288, 2334, 2353, 2296, 2295, 2305, 2304} e2x(log(x)+2)(2x+xlog(x))x2+8x+20x+xlog2(x)+5log2(x)x2xlog(x)+2(3x+5x)log(x)+10log(x)x2ex(log(x)+2)(2x+xlog(x))x

Antiderivative was successfully verified.

[In]

Int[(8*E^(2*x)*x + 12*x^2 + E^x*(-8*x - 8*x^2) + (-10 + 6*x^2 + E^(2*x)*(-2 + 8*x) + E^x*(-4*x - 8*x^2))*Log[x
] + (-5 + x^2 - 2*E^x*x^2 + E^(2*x)*(-1 + 2*x))*Log[x]^2)/x^2,x]

[Out]

20/x + 8*x + (10*Log[x])/x - 2*x*Log[x] + 2*(5/x + 3*x)*Log[x] + (5*Log[x]^2)/x + x*Log[x]^2 + (E^(2*x)*(2 + L
og[x])*(2*x + x*Log[x]))/x^2 - (2*E^x*(2 + Log[x])*(2*x + x*Log[x]))/x

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rule 2353

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rubi steps

integral=(2ex(2+log(x))(2+2x+xlog(x))x+e2x(2+log(x))(4xlog(x)+2xlog(x))x2+12x210log(x)+6x2log(x)5log2(x)+x2log2(x)x2)dx=(2ex(2+log(x))(2+2x+xlog(x))xdx)+e2x(2+log(x))(4xlog(x)+2xlog(x))x2dx+12x210log(x)+6x2log(x)5log2(x)+x2log2(x)x2dx=e2x(2+log(x))(2x+xlog(x))x22ex(2+log(x))(2x+xlog(x))x+(12+2(5+3x2)log(x)x2+(5+x2)log2(x)x2)dx=12x+e2x(2+log(x))(2x+xlog(x))x22ex(2+log(x))(2x+xlog(x))x+2(5+3x2)log(x)x2dx+(5+x2)log2(x)x2dx=12x+2(5x+3x)log(x)+e2x(2+log(x))(2x+xlog(x))x22ex(2+log(x))(2x+xlog(x))x2(3+5x2)dx+(log2(x)5log2(x)x2)dx=10x+6x+2(5x+3x)log(x)+e2x(2+log(x))(2x+xlog(x))x22ex(2+log(x))(2x+xlog(x))x5log2(x)x2dx+log2(x)dx=10x+6x+2(5x+3x)log(x)+5log2(x)x+xlog2(x)+e2x(2+log(x))(2x+xlog(x))x22ex(2+log(x))(2x+xlog(x))x2log(x)dx10log(x)x2dx=20x+8x+10log(x)x2xlog(x)+2(5x+3x)log(x)+5log2(x)x+xlog2(x)+e2x(2+log(x))(2x+xlog(x))x22ex(2+log(x))(2x+xlog(x))x

________________________________________________________________________________________

Mathematica [B]  time = 0.09, size = 66, normalized size = 2.36 4(5+e2x2exx+2x2)+4(5+e2x2exx+x2)log(x)+(5+e2x2exx+x2)log2(x)x

Antiderivative was successfully verified.

[In]

Integrate[(8*E^(2*x)*x + 12*x^2 + E^x*(-8*x - 8*x^2) + (-10 + 6*x^2 + E^(2*x)*(-2 + 8*x) + E^x*(-4*x - 8*x^2))
*Log[x] + (-5 + x^2 - 2*E^x*x^2 + E^(2*x)*(-1 + 2*x))*Log[x]^2)/x^2,x]

[Out]

(4*(5 + E^(2*x) - 2*E^x*x + 2*x^2) + 4*(5 + E^(2*x) - 2*E^x*x + x^2)*Log[x] + (5 + E^(2*x) - 2*E^x*x + x^2)*Lo
g[x]^2)/x

________________________________________________________________________________________

fricas [B]  time = 0.46, size = 59, normalized size = 2.11 (x22xex+e(2x)+5)log(x)2+8x28xex+4(x22xex+e(2x)+5)log(x)+4e(2x)+20x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*log(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*log(
x)+8*x*exp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x, algorithm="fricas")

[Out]

((x^2 - 2*x*e^x + e^(2*x) + 5)*log(x)^2 + 8*x^2 - 8*x*e^x + 4*(x^2 - 2*x*e^x + e^(2*x) + 5)*log(x) + 4*e^(2*x)
 + 20)/x

________________________________________________________________________________________

giac [B]  time = 0.12, size = 80, normalized size = 2.86 x2log(x)22xexlog(x)2+4x2log(x)8xexlog(x)+e(2x)log(x)2+8x28xex+4e(2x)log(x)+5log(x)2+4e(2x)+20log(x)+20x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*log(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*log(
x)+8*x*exp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x, algorithm="giac")

[Out]

(x^2*log(x)^2 - 2*x*e^x*log(x)^2 + 4*x^2*log(x) - 8*x*e^x*log(x) + e^(2*x)*log(x)^2 + 8*x^2 - 8*x*e^x + 4*e^(2
*x)*log(x) + 5*log(x)^2 + 4*e^(2*x) + 20*log(x) + 20)/x

________________________________________________________________________________________

maple [B]  time = 0.10, size = 66, normalized size = 2.36




method result size



risch (x22exx+e2x+5)ln(x)2x+4(x22exx+e2x+5)ln(x)x+8x28exx+4e2x+20x 66
default 8x8exln(x)2exln(x)28ex+ln(x)2e2x+4ln(x)e2x+4e2xx+xln(x)2+4xln(x)+5ln(x)2x+20ln(x)x+20x 83



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*ln(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*ln(x)+8*x*e
xp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

(x^2-2*exp(x)*x+exp(2*x)+5)/x*ln(x)^2+4*(x^2-2*exp(x)*x+exp(2*x)+5)/x*ln(x)+4*(2*x^2-2*exp(x)*x+exp(2*x)+5)/x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 6xlog(x)8exlog(x)+6x2xexlog(x)2(x2+5)log(x)22x2(log(x)2+4log(x))e(2x)+2(x25)log(x)10x+10log(x)x+10x+8Ei(2x)8ex4e(2x)x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x-1)*exp(x)^2-2*exp(x)*x^2+x^2-5)*log(x)^2+((8*x-2)*exp(x)^2+(-8*x^2-4*x)*exp(x)+6*x^2-10)*log(
x)+8*x*exp(x)^2+(-8*x^2-8*x)*exp(x)+12*x^2)/x^2,x, algorithm="maxima")

[Out]

6*x*log(x) - 8*e^x*log(x) + 6*x - (2*x*e^x*log(x)^2 - (x^2 + 5)*log(x)^2 - 2*x^2 - (log(x)^2 + 4*log(x))*e^(2*
x) + 2*(x^2 - 5)*log(x) - 10)/x + 10*log(x)/x + 10/x + 8*Ei(2*x) - 8*e^x - 4*integrate(e^(2*x)/x^2, x)

________________________________________________________________________________________

mupad [B]  time = 5.35, size = 70, normalized size = 2.50 4e2x+20ln(x)+5ln(x)2+4e2xln(x)+e2xln(x)2+20x8exln(x)8ex2exln(x)2+x(ln(x)2+4ln(x)+8)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(x)^2*(2*x^2*exp(x) - exp(2*x)*(2*x - 1) - x^2 + 5) - 8*x*exp(2*x) + log(x)*(exp(x)*(4*x + 8*x^2) - e
xp(2*x)*(8*x - 2) - 6*x^2 + 10) + exp(x)*(8*x + 8*x^2) - 12*x^2)/x^2,x)

[Out]

(4*exp(2*x) + 20*log(x) + 5*log(x)^2 + 4*exp(2*x)*log(x) + exp(2*x)*log(x)^2 + 20)/x - 8*exp(x)*log(x) - 8*exp
(x) - 2*exp(x)*log(x)^2 + x*(4*log(x) + log(x)^2 + 8)

________________________________________________________________________________________

sympy [B]  time = 0.44, size = 71, normalized size = 2.54 8x+(x2+5)log(x)2x+(4x2+20)log(x)x+(2xlog(x)28xlog(x)8x)ex+(log(x)2+4log(x)+4)e2xx+20x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x-1)*exp(x)**2-2*exp(x)*x**2+x**2-5)*ln(x)**2+((8*x-2)*exp(x)**2+(-8*x**2-4*x)*exp(x)+6*x**2-10
)*ln(x)+8*x*exp(x)**2+(-8*x**2-8*x)*exp(x)+12*x**2)/x**2,x)

[Out]

8*x + (x**2 + 5)*log(x)**2/x + (4*x**2 + 20)*log(x)/x + ((-2*x*log(x)**2 - 8*x*log(x) - 8*x)*exp(x) + (log(x)*
*2 + 4*log(x) + 4)*exp(2*x))/x + 20/x

________________________________________________________________________________________