3.89.88 13(3+ee3/xx+x2(1+e3/x(3x)+2x2)log(x))dx

Optimal. Leaf size=34 x+13(x+(2+ex(e3/x+x))xxlog(x))

________________________________________________________________________________________

Rubi [B]  time = 0.10, antiderivative size = 77, normalized size of antiderivative = 2.26, number of steps used = 4, number of rules used = 3, integrand size = 47, number of rulesintegrand size = 0.064, Rules used = {12, 2288, 2295} ex2e3/xx(2x2+e3/x(3x))3(2x+e3/x3e3/xx)+4x313xlog(x)

Antiderivative was successfully verified.

[In]

Int[(3 + E^(-(E^(3/x)*x) + x^2)*(1 + E^(3/x)*(3 - x) + 2*x^2) - Log[x])/3,x]

[Out]

(4*x)/3 - (E^(-(E^(3/x)*x) + x^2)*(E^(3/x)*(3 - x) + 2*x^2))/(3*(E^(3/x) - (3*E^(3/x))/x - 2*x)) - (x*Log[x])/
3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rubi steps

integral=13(3+ee3/xx+x2(1+e3/x(3x)+2x2)log(x))dx=x+13ee3/xx+x2(1+e3/x(3x)+2x2)dx13log(x)dx=4x3ee3/xx+x2(e3/x(3x)+2x2)3(e3/x3e3/xx2x)13xlog(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 26, normalized size = 0.76 13x(4+ex(e3/x+x)log(x))

Antiderivative was successfully verified.

[In]

Integrate[(3 + E^(-(E^(3/x)*x) + x^2)*(1 + E^(3/x)*(3 - x) + 2*x^2) - Log[x])/3,x]

[Out]

(x*(4 + E^(x*(-E^(3/x) + x)) - Log[x]))/3

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 26, normalized size = 0.76 13xe(x2xe3x)13xlog(x)+43x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((3-x)*exp(3/x)+2*x^2+1)*exp(-x*exp(3/x)+x^2)+1-1/3*log(x),x, algorithm="fricas")

[Out]

1/3*x*e^(x^2 - x*e^(3/x)) - 1/3*x*log(x) + 4/3*x

________________________________________________________________________________________

giac [A]  time = 0.25, size = 39, normalized size = 1.15 13xe(x3x2e3x+3x3x)13xlog(x)+43x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((3-x)*exp(3/x)+2*x^2+1)*exp(-x*exp(3/x)+x^2)+1-1/3*log(x),x, algorithm="giac")

[Out]

1/3*x*e^((x^3 - x^2*e^(3/x) + 3)/x - 3/x) - 1/3*x*log(x) + 4/3*x

________________________________________________________________________________________

maple [A]  time = 0.07, size = 26, normalized size = 0.76




method result size



risch 4x3+xe(xe3x)x3xln(x)3 26
default 4x3+xexe3x+x23xln(x)3 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*((3-x)*exp(3/x)+2*x^2+1)*exp(-x*exp(3/x)+x^2)+1-1/3*ln(x),x,method=_RETURNVERBOSE)

[Out]

4/3*x+1/3*x*exp((x-exp(3/x))*x)-1/3*x*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 26, normalized size = 0.76 13xe(x2xe3x)13xlog(x)+43x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((3-x)*exp(3/x)+2*x^2+1)*exp(-x*exp(3/x)+x^2)+1-1/3*log(x),x, algorithm="maxima")

[Out]

1/3*x*e^(x^2 - x*e^(3/x)) - 1/3*x*log(x) + 4/3*x

________________________________________________________________________________________

mupad [B]  time = 5.61, size = 23, normalized size = 0.68 x(ex2xe3/xln(x)+4)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x^2 - x*exp(3/x))*(2*x^2 - exp(3/x)*(x - 3) + 1))/3 - log(x)/3 + 1,x)

[Out]

(x*(exp(x^2 - x*exp(3/x)) - log(x) + 4))/3

________________________________________________________________________________________

sympy [A]  time = 1.95, size = 26, normalized size = 0.76 xex2xe3x3xlog(x)3+4x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((3-x)*exp(3/x)+2*x**2+1)*exp(-x*exp(3/x)+x**2)+1-1/3*ln(x),x)

[Out]

x*exp(x**2 - x*exp(3/x))/3 - x*log(x)/3 + 4*x/3

________________________________________________________________________________________