3.89.90
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 11.21, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^x*(-304 + 152*x^2 - 19*x^4 + E^2*(-304 + 152*x^2 - 19*x^4)) + E^(2*x)*(28 - 5*x^2 + x^4 + E^2*(28 - 5*x
^2 + x^4)))/(5776 - 2888*x^2 + 361*x^4 + E^x*(1064*x - 418*x^3 + 38*x^5) + E^(2*x)*(49*x^2 - 14*x^4 + x^6)),x]
[Out]
-304*(1 + E^2)*Defer[Int][E^x/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] + 171*(1 + E^2)*Defer[Int][E^x/((Sqrt[7
] - x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2), x] - 304*(1 + E^2)*Defer[Int][E^x/(x*(-76 - 7*E^x*x + 19*x^2 + E
^x*x^3)^2), x] + 38*(1 + E^2)*Defer[Int][(E^x*x)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] + 152*(1 + E^2)*Defe
r[Int][(E^x*x^2)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] - 19*(1 + E^2)*Defer[Int][(E^x*x^3)/(-76 - 7*E^x*x +
19*x^2 + E^x*x^3)^2, x] - 19*(1 + E^2)*Defer[Int][(E^x*x^4)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] - 171*(1
+ E^2)*Defer[Int][E^x/((Sqrt[7] + x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2), x] - 3*(1 + E^2)*Defer[Int][E^x/(
(Sqrt[7] - x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)), x] - 4*(1 + E^2)*Defer[Int][E^x/(x*(-76 - 7*E^x*x + 19*x^2
+ E^x*x^3)), x] + (1 + E^2)*Defer[Int][(E^x*x)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3), x] + 3*(1 + E^2)*Defer[Int]
[E^x/((Sqrt[7] + x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 5.05, size = 35, normalized size = 1.13
Antiderivative was successfully verified.
[In]
Integrate[(E^x*(-304 + 152*x^2 - 19*x^4 + E^2*(-304 + 152*x^2 - 19*x^4)) + E^(2*x)*(28 - 5*x^2 + x^4 + E^2*(28
- 5*x^2 + x^4)))/(5776 - 2888*x^2 + 361*x^4 + E^x*(1064*x - 418*x^3 + 38*x^5) + E^(2*x)*(49*x^2 - 14*x^4 + x^
6)),x]
[Out]
-((E^x*(1 + E^2)*(-4 + x^2))/(E^x*x*(-7 + x^2) + 19*(-4 + x^2)))
________________________________________________________________________________________
fricas [A] time = 0.58, size = 36, normalized size = 1.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp
(x))/((x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x, algorithm="fricas"
)
[Out]
-(x^2 + (x^2 - 4)*e^2 - 4)*e^x/(19*x^2 + (x^3 - 7*x)*e^x - 76)
________________________________________________________________________________________
giac [A] time = 0.23, size = 47, normalized size = 1.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp
(x))/((x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x, algorithm="giac")
[Out]
-(x^2*e^(x + 2) + x^2*e^x - 4*e^(x + 2) - 4*e^x)/(x^3*e^x + 19*x^2 - 7*x*e^x - 76)
________________________________________________________________________________________
maple [A] time = 0.18, size = 44, normalized size = 1.42
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp(x))/(
(x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x,method=_RETURNVERBOSE)
[Out]
((4*exp(2)+4)*exp(x)+(-exp(2)-1)*x^2*exp(x))/(exp(x)*x^3-7*exp(x)*x+19*x^2-76)
________________________________________________________________________________________
maxima [A] time = 0.42, size = 37, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp
(x))/((x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x, algorithm="maxima"
)
[Out]
-(x^2*(e^2 + 1) - 4*e^2 - 4)*e^x/(19*x^2 + (x^3 - 7*x)*e^x - 76)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(2*x)*(exp(2)*(x^4 - 5*x^2 + 28) - 5*x^2 + x^4 + 28) - exp(x)*(exp(2)*(19*x^4 - 152*x^2 + 304) - 152*x
^2 + 19*x^4 + 304))/(exp(2*x)*(49*x^2 - 14*x^4 + x^6) - 2888*x^2 + 361*x^4 + exp(x)*(1064*x - 418*x^3 + 38*x^5
) + 5776),x)
[Out]
int((exp(2*x)*(exp(2)*(x^4 - 5*x^2 + 28) - 5*x^2 + x^4 + 28) - exp(x)*(exp(2)*(19*x^4 - 152*x^2 + 304) - 152*x
^2 + 19*x^4 + 304))/(exp(2*x)*(49*x^2 - 14*x^4 + x^6) - 2888*x^2 + 361*x^4 + exp(x)*(1064*x - 418*x^3 + 38*x^5
) + 5776), x)
________________________________________________________________________________________
sympy [B] time = 0.64, size = 87, normalized size = 2.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x**4-5*x**2+28)*exp(2)+x**4-5*x**2+28)*exp(x)**2+((-19*x**4+152*x**2-304)*exp(2)-19*x**4+152*x**2
-304)*exp(x))/((x**6-14*x**4+49*x**2)*exp(x)**2+(38*x**5-418*x**3+1064*x)*exp(x)+361*x**4-2888*x**2+5776),x)
[Out]
(19*x**4 + 19*x**4*exp(2) - 152*x**2*exp(2) - 152*x**2 + 304 + 304*exp(2))/(19*x**5 - 209*x**3 + 532*x + (x**6
- 14*x**4 + 49*x**2)*exp(x)) + (x**2*(-exp(2) - 1) + 4 + 4*exp(2))/(x**3 - 7*x)
________________________________________________________________________________________