3.89.90 ex(304+152x219x4+e2(304+152x219x4))+e2x(285x2+x4+e2(285x2+x4))57762888x2+361x4+ex(1064x418x3+38x5)+e2x(49x214x4+x6)dx

Optimal. Leaf size=31 1+e219ex+xx(234+x2)

________________________________________________________________________________________

Rubi [F]  time = 11.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex(304+152x219x4+e2(304+152x219x4))+e2x(285x2+x4+e2(285x2+x4))57762888x2+361x4+ex(1064x418x3+38x5)+e2x(49x214x4+x6)dx

Verification is not applicable to the result.

[In]

Int[(E^x*(-304 + 152*x^2 - 19*x^4 + E^2*(-304 + 152*x^2 - 19*x^4)) + E^(2*x)*(28 - 5*x^2 + x^4 + E^2*(28 - 5*x
^2 + x^4)))/(5776 - 2888*x^2 + 361*x^4 + E^x*(1064*x - 418*x^3 + 38*x^5) + E^(2*x)*(49*x^2 - 14*x^4 + x^6)),x]

[Out]

-304*(1 + E^2)*Defer[Int][E^x/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] + 171*(1 + E^2)*Defer[Int][E^x/((Sqrt[7
] - x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2), x] - 304*(1 + E^2)*Defer[Int][E^x/(x*(-76 - 7*E^x*x + 19*x^2 + E
^x*x^3)^2), x] + 38*(1 + E^2)*Defer[Int][(E^x*x)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] + 152*(1 + E^2)*Defe
r[Int][(E^x*x^2)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] - 19*(1 + E^2)*Defer[Int][(E^x*x^3)/(-76 - 7*E^x*x +
 19*x^2 + E^x*x^3)^2, x] - 19*(1 + E^2)*Defer[Int][(E^x*x^4)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2, x] - 171*(1
 + E^2)*Defer[Int][E^x/((Sqrt[7] + x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)^2), x] - 3*(1 + E^2)*Defer[Int][E^x/(
(Sqrt[7] - x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)), x] - 4*(1 + E^2)*Defer[Int][E^x/(x*(-76 - 7*E^x*x + 19*x^2
+ E^x*x^3)), x] + (1 + E^2)*Defer[Int][(E^x*x)/(-76 - 7*E^x*x + 19*x^2 + E^x*x^3), x] + 3*(1 + E^2)*Defer[Int]
[E^x/((Sqrt[7] + x)*(-76 - 7*E^x*x + 19*x^2 + E^x*x^3)), x]

Rubi steps

integral=ex(1+e2)(19(4+x2)2+ex(285x2+x4))(exx(7+x2)+19(4+x2))2dx=(1+e2)ex(19(4+x2)2+ex(285x2+x4))(exx(7+x2)+19(4+x2))2dx=(1+e2)(ex(285x2+x4)x(7+x2)(767exx+19x2+exx3)19ex(112112x+48x2+72x39x415x5+x6+x7)x(7+x2)(767exx+19x2+exx3)2)dx=(1+e2)ex(285x2+x4)x(7+x2)(767exx+19x2+exx3)dx(19(1+e2))ex(112112x+48x2+72x39x415x5+x6+x7)x(7+x2)(767exx+19x2+exx3)2dx=(1+e2)(4exx(767exx+19x2+exx3)+exx767exx+19x2+exx3+6exx(7+x2)(767exx+19x2+exx3))dx(19(1+e2))(16ex(767exx+19x2+exx3)2+16exx(767exx+19x2+exx3)22exx(767exx+19x2+exx3)28exx2(767exx+19x2+exx3)2+exx3(767exx+19x2+exx3)2+exx4(767exx+19x2+exx3)2+18exx(7+x2)(767exx+19x2+exx3)2)dx=(1+e2)exx767exx+19x2+exx3dx(4(1+e2))exx(767exx+19x2+exx3)dx+(6(1+e2))exx(7+x2)(767exx+19x2+exx3)dx(19(1+e2))exx3(767exx+19x2+exx3)2dx(19(1+e2))exx4(767exx+19x2+exx3)2dx+(38(1+e2))exx(767exx+19x2+exx3)2dx+(152(1+e2))exx2(767exx+19x2+exx3)2dx(304(1+e2))ex(767exx+19x2+exx3)2dx(304(1+e2))exx(767exx+19x2+exx3)2dx(342(1+e2))exx(7+x2)(767exx+19x2+exx3)2dx=(1+e2)exx767exx+19x2+exx3dx(4(1+e2))exx(767exx+19x2+exx3)dx+(6(1+e2))(ex2(7x)(767exx+19x2+exx3)+ex2(7+x)(767exx+19x2+exx3))dx(19(1+e2))exx3(767exx+19x2+exx3)2dx(19(1+e2))exx4(767exx+19x2+exx3)2dx+(38(1+e2))exx(767exx+19x2+exx3)2dx+(152(1+e2))exx2(767exx+19x2+exx3)2dx(304(1+e2))ex(767exx+19x2+exx3)2dx(304(1+e2))exx(767exx+19x2+exx3)2dx(342(1+e2))(ex2(7x)(767exx+19x2+exx3)2+ex2(7+x)(767exx+19x2+exx3)2)dx=(1+e2)exx767exx+19x2+exx3dx(3(1+e2))ex(7x)(767exx+19x2+exx3)dx+(3(1+e2))ex(7+x)(767exx+19x2+exx3)dx(4(1+e2))exx(767exx+19x2+exx3)dx(19(1+e2))exx3(767exx+19x2+exx3)2dx(19(1+e2))exx4(767exx+19x2+exx3)2dx+(38(1+e2))exx(767exx+19x2+exx3)2dx+(152(1+e2))exx2(767exx+19x2+exx3)2dx+(171(1+e2))ex(7x)(767exx+19x2+exx3)2dx(171(1+e2))ex(7+x)(767exx+19x2+exx3)2dx(304(1+e2))ex(767exx+19x2+exx3)2dx(304(1+e2))exx(767exx+19x2+exx3)2dx

________________________________________________________________________________________

Mathematica [A]  time = 5.05, size = 35, normalized size = 1.13 ex(1+e2)(4+x2)exx(7+x2)+19(4+x2)

Antiderivative was successfully verified.

[In]

Integrate[(E^x*(-304 + 152*x^2 - 19*x^4 + E^2*(-304 + 152*x^2 - 19*x^4)) + E^(2*x)*(28 - 5*x^2 + x^4 + E^2*(28
 - 5*x^2 + x^4)))/(5776 - 2888*x^2 + 361*x^4 + E^x*(1064*x - 418*x^3 + 38*x^5) + E^(2*x)*(49*x^2 - 14*x^4 + x^
6)),x]

[Out]

-((E^x*(1 + E^2)*(-4 + x^2))/(E^x*x*(-7 + x^2) + 19*(-4 + x^2)))

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 36, normalized size = 1.16 (x2+(x24)e24)ex19x2+(x37x)ex76

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp
(x))/((x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x, algorithm="fricas"
)

[Out]

-(x^2 + (x^2 - 4)*e^2 - 4)*e^x/(19*x^2 + (x^3 - 7*x)*e^x - 76)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 47, normalized size = 1.52 x2e(x+2)+x2ex4e(x+2)4exx3ex+19x27xex76

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp
(x))/((x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x, algorithm="giac")

[Out]

-(x^2*e^(x + 2) + x^2*e^x - 4*e^(x + 2) - 4*e^x)/(x^3*e^x + 19*x^2 - 7*x*e^x - 76)

________________________________________________________________________________________

maple [A]  time = 0.18, size = 44, normalized size = 1.42




method result size



norman (4e2+4)ex+(e21)x2exexx37exx+19x276 44
risch (e21)x2+4+4e2(x27)x+19x4e2+19x4152x2e2152x2+304e2+304(x27)x(exx37exx+19x276) 88



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp(x))/(
(x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x,method=_RETURNVERBOSE)

[Out]

((4*exp(2)+4)*exp(x)+(-exp(2)-1)*x^2*exp(x))/(exp(x)*x^3-7*exp(x)*x+19*x^2-76)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 37, normalized size = 1.19 (x2(e2+1)4e24)ex19x2+(x37x)ex76

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x^4-5*x^2+28)*exp(2)+x^4-5*x^2+28)*exp(x)^2+((-19*x^4+152*x^2-304)*exp(2)-19*x^4+152*x^2-304)*exp
(x))/((x^6-14*x^4+49*x^2)*exp(x)^2+(38*x^5-418*x^3+1064*x)*exp(x)+361*x^4-2888*x^2+5776),x, algorithm="maxima"
)

[Out]

-(x^2*(e^2 + 1) - 4*e^2 - 4)*e^x/(19*x^2 + (x^3 - 7*x)*e^x - 76)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 e2x(e2(x45x2+28)5x2+x4+28)ex(e2(19x4152x2+304)152x2+19x4+304)e2x(x614x4+49x2)2888x2+361x4+ex(38x5418x3+1064x)+5776dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*x)*(exp(2)*(x^4 - 5*x^2 + 28) - 5*x^2 + x^4 + 28) - exp(x)*(exp(2)*(19*x^4 - 152*x^2 + 304) - 152*x
^2 + 19*x^4 + 304))/(exp(2*x)*(49*x^2 - 14*x^4 + x^6) - 2888*x^2 + 361*x^4 + exp(x)*(1064*x - 418*x^3 + 38*x^5
) + 5776),x)

[Out]

int((exp(2*x)*(exp(2)*(x^4 - 5*x^2 + 28) - 5*x^2 + x^4 + 28) - exp(x)*(exp(2)*(19*x^4 - 152*x^2 + 304) - 152*x
^2 + 19*x^4 + 304))/(exp(2*x)*(49*x^2 - 14*x^4 + x^6) - 2888*x^2 + 361*x^4 + exp(x)*(1064*x - 418*x^3 + 38*x^5
) + 5776), x)

________________________________________________________________________________________

sympy [B]  time = 0.64, size = 87, normalized size = 2.81 19x4+19x4e2152x2e2152x2+304+304e219x5209x3+532x+(x614x4+49x2)ex+x2(e21)+4+4e2x37x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x**4-5*x**2+28)*exp(2)+x**4-5*x**2+28)*exp(x)**2+((-19*x**4+152*x**2-304)*exp(2)-19*x**4+152*x**2
-304)*exp(x))/((x**6-14*x**4+49*x**2)*exp(x)**2+(38*x**5-418*x**3+1064*x)*exp(x)+361*x**4-2888*x**2+5776),x)

[Out]

(19*x**4 + 19*x**4*exp(2) - 152*x**2*exp(2) - 152*x**2 + 304 + 304*exp(2))/(19*x**5 - 209*x**3 + 532*x + (x**6
 - 14*x**4 + 49*x**2)*exp(x)) + (x**2*(-exp(2) - 1) + 4 + 4*exp(2))/(x**3 - 7*x)

________________________________________________________________________________________