3.89.89 124x3x2+e5x(2+13x)4+e5xxx2dx

Optimal. Leaf size=23 4+x+log(3)+2(x+log(4+x(e5x+x)))

________________________________________________________________________________________

Rubi [F]  time = 0.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 124x3x2+e5x(2+13x)4+e5xxx2dx

Verification is not applicable to the result.

[In]

Int[(-12 - 4*x - 3*x^2 + E^(5*x)*(2 + 13*x))/(-4 + E^(5*x)*x - x^2),x]

[Out]

13*x + 2*Log[x] + 40*Defer[Int][(-4 + E^(5*x)*x - x^2)^(-1), x] - 8*Defer[Int][1/(x*(4 - E^(5*x)*x + x^2)), x]
 + 2*Defer[Int][x/(4 - E^(5*x)*x + x^2), x] - 10*Defer[Int][x^2/(4 - E^(5*x)*x + x^2), x]

Rubi steps

integral=(2+13xx2(4+20xx2+5x3)x(4e5xx+x2))dx=(24+20xx2+5x3x(4e5xx+x2)dx)+2+13xxdx=(2(204+e5xxx2+4x(4e5xx+x2)x4e5xx+x2+5x24e5xx+x2)dx)+(13+2x)dx=13x+2log(x)+2x4e5xx+x2dx81x(4e5xx+x2)dx10x24e5xx+x2dx+4014+e5xxx2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 20, normalized size = 0.87 3x+2log(4e5xx+x2)

Antiderivative was successfully verified.

[In]

Integrate[(-12 - 4*x - 3*x^2 + E^(5*x)*(2 + 13*x))/(-4 + E^(5*x)*x - x^2),x]

[Out]

3*x + 2*Log[4 - E^(5*x)*x + x^2]

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 28, normalized size = 1.22 3x+2log(x)+2log(x2xe(5x)+4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x+2)*exp(5*x)-3*x^2-4*x-12)/(x*exp(5*x)-x^2-4),x, algorithm="fricas")

[Out]

3*x + 2*log(x) + 2*log(-(x^2 - x*e^(5*x) + 4)/x)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 20, normalized size = 0.87 3x+2log(x2+xe(5x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x+2)*exp(5*x)-3*x^2-4*x-12)/(x*exp(5*x)-x^2-4),x, algorithm="giac")

[Out]

3*x + 2*log(-x^2 + x*e^(5*x) - 4)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 20, normalized size = 0.87




method result size



norman 3x+2ln(x2xe5x+4) 20
risch 3x+2ln(x)+2ln(e5xx2+4x) 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((13*x+2)*exp(5*x)-3*x^2-4*x-12)/(x*exp(5*x)-x^2-4),x,method=_RETURNVERBOSE)

[Out]

3*x+2*ln(x^2-x*exp(5*x)+4)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 28, normalized size = 1.22 3x+2log(x)+2log(x2xe(5x)+4x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x+2)*exp(5*x)-3*x^2-4*x-12)/(x*exp(5*x)-x^2-4),x, algorithm="maxima")

[Out]

3*x + 2*log(x) + 2*log(-(x^2 - x*e^(5*x) + 4)/x)

________________________________________________________________________________________

mupad [B]  time = 5.59, size = 19, normalized size = 0.83 3x+2ln(x2xe5x+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*x - exp(5*x)*(13*x + 2) + 3*x^2 + 12)/(x^2 - x*exp(5*x) + 4),x)

[Out]

3*x + 2*log(x^2 - x*exp(5*x) + 4)

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 24, normalized size = 1.04 3x+2log(x)+2log(e5x+x24x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x+2)*exp(5*x)-3*x**2-4*x-12)/(x*exp(5*x)-x**2-4),x)

[Out]

3*x + 2*log(x) + 2*log(exp(5*x) + (-x**2 - 4)/x)

________________________________________________________________________________________