Optimal. Leaf size=21 \[ x^2 \left (5+3 \left (-25 e^{4+x}+x (3+x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 26, normalized size of antiderivative = 1.24, number of steps used = 9, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} 3 x^4+9 x^3-75 e^{x+4} x^2+5 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 x^2+9 x^3+3 x^4+\int e^{4+x} \left (-150 x-75 x^2\right ) \, dx\\ &=5 x^2+9 x^3+3 x^4+\int e^{4+x} (-150-75 x) x \, dx\\ &=5 x^2+9 x^3+3 x^4+\int \left (-150 e^{4+x} x-75 e^{4+x} x^2\right ) \, dx\\ &=5 x^2+9 x^3+3 x^4-75 \int e^{4+x} x^2 \, dx-150 \int e^{4+x} x \, dx\\ &=-150 e^{4+x} x+5 x^2-75 e^{4+x} x^2+9 x^3+3 x^4+150 \int e^{4+x} \, dx+150 \int e^{4+x} x \, dx\\ &=150 e^{4+x}+5 x^2-75 e^{4+x} x^2+9 x^3+3 x^4-150 \int e^{4+x} \, dx\\ &=5 x^2-75 e^{4+x} x^2+9 x^3+3 x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.00 \begin {gather*} x^2 \left (5-75 e^{4+x}+9 x+3 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 25, normalized size = 1.19 \begin {gather*} 3 \, x^{4} + 9 \, x^{3} - 75 \, x^{2} e^{\left (x + 4\right )} + 5 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 25, normalized size = 1.19 \begin {gather*} 3 \, x^{4} + 9 \, x^{3} - 75 \, x^{2} e^{\left (x + 4\right )} + 5 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.24
method | result | size |
risch | \(5 x^{2}+9 x^{3}+3 x^{4}-75 x^{2} {\mathrm e}^{4+x}\) | \(26\) |
norman | \(5 x^{2}+9 x^{3}+3 x^{4}-75 \,{\mathrm e}^{3} {\mathrm e}^{x +1} x^{2}\) | \(28\) |
default | \(75 \,{\mathrm e}^{3} \left (-{\mathrm e}^{x +1} \left (x +1\right )^{2}+2 \left (x +1\right ) {\mathrm e}^{x +1}-{\mathrm e}^{x +1}\right )+5 x^{2}+9 x^{3}+3 x^{4}\) | \(48\) |
derivativedivides | \(-10 x -10+75 \,{\mathrm e}^{3} \left (-{\mathrm e}^{x +1} \left (x +1\right )^{2}+2 \left (x +1\right ) {\mathrm e}^{x +1}-{\mathrm e}^{x +1}\right )+5 \left (x +1\right )^{2}+9 x^{3}+3 x^{4}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 1.19 \begin {gather*} 3 \, x^{4} + 9 \, x^{3} - 75 \, x^{2} e^{\left (x + 4\right )} + 5 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 20, normalized size = 0.95 \begin {gather*} x^2\,\left (9\,x-75\,{\mathrm {e}}^{x+4}+3\,x^2+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 27, normalized size = 1.29 \begin {gather*} 3 x^{4} + 9 x^{3} - 75 x^{2} e^{3} e^{x + 1} + 5 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________