Optimal. Leaf size=29 \[ \frac {e^{-5+e^{\frac {2 e^3}{x}}+\frac {\log (2)}{1+x}}}{2 x} \]
________________________________________________________________________________________
Rubi [F] time = 6.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-x-2 x^2-x^3+e^{3+\frac {2 e^3}{x}} \left (-2-4 x-2 x^2\right )-x^2 \log (2)\right )}{2 x^3+4 x^4+2 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-x-x^3+e^{3+\frac {2 e^3}{x}} \left (-2-4 x-2 x^2\right )+x^2 (-2-\log (2))\right )}{2 x^3+4 x^4+2 x^5} \, dx\\ &=\int \frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-x-x^3+e^{3+\frac {2 e^3}{x}} \left (-2-4 x-2 x^2\right )+x^2 (-2-\log (2))\right )}{x^3 \left (2+4 x+2 x^2\right )} \, dx\\ &=\int \frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-x-x^3+e^{3+\frac {2 e^3}{x}} \left (-2-4 x-2 x^2\right )+x^2 (-2-\log (2))\right )}{2 x^3 (1+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-x-x^3+e^{3+\frac {2 e^3}{x}} \left (-2-4 x-2 x^2\right )+x^2 (-2-\log (2))\right )}{x^3 (1+x)^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {2 \exp \left (1+\frac {2 e^3}{x}+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right )}{x^3}+\frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-1-x^2-x (2+\log (2))\right )}{x^2 (1+x)^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (-2+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right ) \left (-1-x^2-x (2+\log (2))\right )}{x^2 (1+x)^2} \, dx-\int \frac {\exp \left (1+\frac {2 e^3}{x}+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}} \left (-1-x^2-x (2+\log (2))\right )}{x^2 (1+x)^2} \, dx-\int \frac {\exp \left (1+\frac {2 e^3}{x}+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (-\frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}}}{x^2}-\frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}} \log (2)}{x}+\frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}} \log (2)}{(1+x)^2}+\frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}} \log (2)}{1+x}\right ) \, dx-\int \frac {\exp \left (1+\frac {2 e^3}{x}+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right )}{x^3} \, dx\\ &=-\left (\frac {1}{2} \int \frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}}}{x^2} \, dx\right )-\frac {1}{2} \log (2) \int \frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}}}{x} \, dx+\frac {1}{2} \log (2) \int \frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}}}{(1+x)^2} \, dx+\frac {1}{2} \log (2) \int \frac {2^{\frac {1}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}}}{1+x} \, dx-\int \frac {\exp \left (1+\frac {2 e^3}{x}+\frac {-3-3 x+e^{\frac {2 e^3}{x}} (1+x)+\log (2)}{1+x}\right )}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 0.97 \begin {gather*} \frac {2^{-\frac {x}{1+x}} e^{-5+e^{\frac {2 e^3}{x}}}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 47, normalized size = 1.62 \begin {gather*} \frac {e^{\left (-\frac {{\left (5 \, {\left (x + 1\right )} e^{3} - {\left (x + 1\right )} e^{\left (\frac {3 \, x + 2 \, e^{3}}{x}\right )} - e^{3} \log \relax (2)\right )} e^{\left (-3\right )}}{x + 1}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{3} + x^{2} \log \relax (2) + 2 \, x^{2} + 2 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (\frac {2 \, e^{3}}{x} + 3\right )} + x\right )} e^{\left (\frac {{\left (x + 1\right )} e^{\left (\frac {2 \, e^{3}}{x}\right )} - 3 \, x + \log \relax (2) - 3}{x + 1} - 2\right )}}{2 \, {\left (x^{5} + 2 \, x^{4} + x^{3}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 24, normalized size = 0.83
method | result | size |
risch | \(\frac {2^{\frac {1}{x +1}} {\mathrm e}^{-5+{\mathrm e}^{\frac {2 \,{\mathrm e}^{3}}{x}}}}{2 x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 24, normalized size = 0.83 \begin {gather*} \frac {e^{\left (\frac {\log \relax (2)}{x + 1} + e^{\left (\frac {2 \, e^{3}}{x}\right )} - 5\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.68, size = 62, normalized size = 2.14 \begin {gather*} \frac {2^{\frac {1}{x+1}}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{-\frac {3\,x}{x+1}}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^3}{x}}}{x+1}}\,{\mathrm {e}}^{-\frac {3}{x+1}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^3}{x}}}{x+1}}}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 31, normalized size = 1.07 \begin {gather*} \frac {e^{\frac {- 3 x + \left (x + 1\right ) e^{\frac {2 e^{3}}{x}} - 3 + \log {\relax (2 )}}{x + 1}}}{2 x e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________