Optimal. Leaf size=25 \[ x^2 \log \left (\frac {2}{5}+x-e \left (e^3+\left (x+x^2\right ) \log (3)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.16, antiderivative size = 34, normalized size of antiderivative = 1.36, number of steps used = 18, number of rules used = 10, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6741, 6688, 14, 800, 634, 618, 204, 628, 2525, 12} \begin {gather*} x^2 \log \left (-e x^2 \log (3)+x (1-e \log (3))+\frac {1}{5} \left (2-5 e^4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 204
Rule 618
Rule 628
Rule 634
Rule 800
Rule 2525
Rule 6688
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 x^2-e \left (5 x^2+10 x^3\right ) \log (3)-\left (-4 x+10 e^4 x-10 x^2+e \left (10 x^2+10 x^3\right ) \log (3)\right ) \log \left (\frac {1}{5} \left (2-5 e^4+5 x+e \left (-5 x-5 x^2\right ) \log (3)\right )\right )}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx\\ &=\int x \left (\frac {5 x (-1+e (\log (3)+x \log (9)))}{-2+5 e^4-5 x+5 e x (1+x) \log (3)}+2 \log \left (\frac {2}{5}-e^4+x-e x (1+x) \log (3)\right )\right ) \, dx\\ &=\int \left (\frac {5 x^2 (1-e \log (3)-e x \log (9))}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))}+2 x \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )\right ) \, dx\\ &=2 \int x \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right ) \, dx+5 \int \frac {x^2 (1-e \log (3)-e x \log (9))}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx\\ &=x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )+5 \int \left (\frac {1}{5} \left (-1+\frac {1}{e \log (3)}\right )+\frac {x \log (9)}{5 \log (3)}-\frac {\left (2-5 e^4\right ) \log (3) (1-e \log (3))+x \left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right )}{5 e \log ^2(3) \left (2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))\right )}\right ) \, dx-\int \frac {5 x^2 (1-e \log (3)-e x \log (9))}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx\\ &=-x \left (1-\frac {1}{e \log (3)}\right )+\frac {x^2 \log (9)}{2 \log (3)}+x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )-5 \int \frac {x^2 (1-e \log (3)-e x \log (9))}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx-\frac {\int \frac {\left (2-5 e^4\right ) \log (3) (1-e \log (3))+x \left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right )}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx}{e \log ^2(3)}\\ &=-x \left (1-\frac {1}{e \log (3)}\right )+\frac {x^2 \log (9)}{2 \log (3)}+x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )-5 \int \left (\frac {1}{5} \left (-1+\frac {1}{e \log (3)}\right )+\frac {x \log (9)}{5 \log (3)}-\frac {\left (2-5 e^4\right ) \log (3) (1-e \log (3))+x \left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right )}{5 e \log ^2(3) \left (2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))\right )}\right ) \, dx+\frac {\left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right ) \int \frac {-10 e x \log (3)+5 (1-e \log (3))}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx}{10 e^2 \log ^3(3)}-\frac {\left ((1-e \log (3)) \left (4 e \log ^2(3)+5 e^2 \log ^3(3)-e \log (9) \log (27)-5 e^5 \log (3) \log (81)+\log (243)\right )\right ) \int \frac {1}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx}{2 e^2 \log ^3(3)}\\ &=x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )+\frac {\left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right ) \log \left (2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))\right )}{10 e^2 \log ^3(3)}+\frac {\int \frac {\left (2-5 e^4\right ) \log (3) (1-e \log (3))+x \left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right )}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx}{e \log ^2(3)}+\frac {\left ((1-e \log (3)) \left (4 e \log ^2(3)+5 e^2 \log ^3(3)-e \log (9) \log (27)-5 e^5 \log (3) \log (81)+\log (243)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-x^2+5 \left (4 e \left (2-5 e^4\right ) \log (3)+5 (1-e \log (3))^2\right )} \, dx,x,-10 e x \log (3)+5 (1-e \log (3))\right )}{e^2 \log ^3(3)}\\ &=-\frac {\tan ^{-1}\left (\sqrt {\frac {5}{-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)}} (1-e (\log (3)+x \log (9)))\right ) (1-e \log (3)) \left (4 e \log ^2(3)+5 e^2 \log ^3(3)-e \log (9) \log (27)-5 e^5 \log (3) \log (81)+\log (243)\right )}{e^2 \log ^3(3) \sqrt {5 \left (-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)\right )}}+x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )+\frac {\left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right ) \log \left (2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))\right )}{10 e^2 \log ^3(3)}-\frac {\left (5 e^2 \log ^3(3)-5 e^5 \log (3) \log (9)-e \log (9) \log (27)+\log (243)\right ) \int \frac {-10 e x \log (3)+5 (1-e \log (3))}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx}{10 e^2 \log ^3(3)}+\frac {\left ((1-e \log (3)) \left (4 e \log ^2(3)+5 e^2 \log ^3(3)-e \log (9) \log (27)-5 e^5 \log (3) \log (81)+\log (243)\right )\right ) \int \frac {1}{2-5 e^4-5 e x^2 \log (3)+5 x (1-e \log (3))} \, dx}{2 e^2 \log ^3(3)}\\ &=-\frac {\tan ^{-1}\left (\sqrt {\frac {5}{-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)}} (1-e (\log (3)+x \log (9)))\right ) (1-e \log (3)) \left (4 e \log ^2(3)+5 e^2 \log ^3(3)-e \log (9) \log (27)-5 e^5 \log (3) \log (81)+\log (243)\right )}{e^2 \log ^3(3) \sqrt {5 \left (-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)\right )}}+x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )-\frac {\left ((1-e \log (3)) \left (4 e \log ^2(3)+5 e^2 \log ^3(3)-e \log (9) \log (27)-5 e^5 \log (3) \log (81)+\log (243)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-x^2+5 \left (4 e \left (2-5 e^4\right ) \log (3)+5 (1-e \log (3))^2\right )} \, dx,x,-10 e x \log (3)+5 (1-e \log (3))\right )}{e^2 \log ^3(3)}\\ &=x^2 \log \left (\frac {1}{5} \left (2-5 e^4\right )-e x^2 \log (3)+x (1-e \log (3))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.88, size = 385, normalized size = 15.40 \begin {gather*} \frac {1}{10} \left (-\frac {5 x^2 \log (9)}{\log (3)}-\frac {2 \tan ^{-1}\left (\sqrt {\frac {5}{-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)}} (1-e (\log (3)+x \log (9)))\right ) (-1+e \log (3)) \sqrt {5 \left (-5-5 e^2 \log ^2(3)+e \log (9)+5 e^5 \log (81)\right )}}{e^2 \log ^2(3)}+\frac {2 \tan ^{-1}\left (\sqrt {\frac {5}{-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)}} (1-e (\log (3)+x \log (9)))\right ) (-1+e \log (3)) \sqrt {5 \left (-5-5 e^2 \log ^2(3)+e \log (9)+5 e^5 \log (81)\right )} \left (-4 e \log ^2(3)-5 e^2 \log ^3(3)+e \log (9) \log (27)+5 e^5 \log (3) \log (81)-\log (243)\right )}{e^2 \log ^3(3) \left (-5+20 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (9)\right )}+\frac {\left (-5 e^2 \log ^3(3)+5 e^5 \log (3) \log (9)+e \log (9) \log (27)-\log (243)\right ) \log \left (2-5 e^4+5 x-5 e x (1+x) \log (3)\right )}{e^2 \log ^3(3)}-\frac {\left (-5+10 e^5 \log (3)-5 e^2 \log ^2(3)+e \log (729)\right ) \log \left (2-5 e^4+5 x-5 e x (1+x) \log (3)\right )}{e^2 \log ^2(3)}+10 x^2 \left (1+\log \left (\frac {2}{5}-e^4+x-e x (1+x) \log (3)\right )\right )\right ) \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 23, normalized size = 0.92 \begin {gather*} x^{2} \log \left (-{\left (x^{2} + x\right )} e \log \relax (3) + x - e^{4} + \frac {2}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 38, normalized size = 1.52 \begin {gather*} -x^{2} \log \relax (5) + x^{2} \log \left (5 \, x^{2} e \log \relax (3) + 5 \, x e \log \relax (3) - 5 \, x + 5 \, e^{4} - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.02, size = 28, normalized size = 1.12
method | result | size |
risch | \(x^{2} \ln \left (\frac {\left (-5 x^{2}-5 x \right ) {\mathrm e} \ln \relax (3)}{5}-{\mathrm e}^{4}+x +\frac {2}{5}\right )\) | \(28\) |
norman | \(x^{2} \ln \left (\frac {\left (-5 x^{2}-5 x \right ) {\mathrm e} \ln \relax (3)}{5}-{\mathrm e} \,{\mathrm e}^{3}+x +\frac {2}{5}\right )\) | \(30\) |
default | \(-x^{2} \ln \relax (5)+x^{2} \ln \left (-5 \,{\mathrm e} \ln \relax (3) x^{2}-5 x \,{\mathrm e} \ln \relax (3)-5 \,{\mathrm e} \,{\mathrm e}^{3}+5 x +2\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.95, size = 705, normalized size = 28.20 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.05, size = 27, normalized size = 1.08 \begin {gather*} x^2\,\ln \left (x-{\mathrm {e}}^4-\frac {\mathrm {e}\,\ln \relax (3)\,\left (5\,x^2+5\,x\right )}{5}+\frac {2}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 26, normalized size = 1.04 \begin {gather*} x^{2} \log {\left (x + e \left (- x^{2} - x\right ) \log {\relax (3 )} - e^{4} + \frac {2}{5} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________