Optimal. Leaf size=25 \[ \log (3 x)-\frac {3}{2} x \log \left (\frac {3 x}{\frac {e^2}{5}+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 7, number of rules used = 5, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {1593, 6742, 72, 2486, 31} \begin {gather*} \log (x)-\frac {3}{2} x \log \left (\frac {15 x}{5 x+e^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 72
Rule 1593
Rule 2486
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 (2-3 x)+10 x+\left (-3 e^2 x-15 x^2\right ) \log \left (\frac {15 x}{e^2+5 x}\right )}{x \left (2 e^2+10 x\right )} \, dx\\ &=\int \left (\frac {2 e^2+\left (10-3 e^2\right ) x}{2 x \left (e^2+5 x\right )}-\frac {3}{2} \log \left (\frac {15 x}{e^2+5 x}\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {2 e^2+\left (10-3 e^2\right ) x}{x \left (e^2+5 x\right )} \, dx-\frac {3}{2} \int \log \left (\frac {15 x}{e^2+5 x}\right ) \, dx\\ &=-\frac {3}{2} x \log \left (\frac {15 x}{e^2+5 x}\right )+\frac {1}{2} \int \left (\frac {2}{x}-\frac {3 e^2}{e^2+5 x}\right ) \, dx+\frac {1}{2} \left (3 e^2\right ) \int \frac {1}{e^2+5 x} \, dx\\ &=\log (x)-\frac {3}{2} x \log \left (\frac {15 x}{e^2+5 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{2} \left (2 \log (x)-3 x \log \left (\frac {15 x}{e^2+5 x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 18, normalized size = 0.72 \begin {gather*} -\frac {3}{2} \, x \log \left (\frac {15 \, x}{5 \, x + e^{2}}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 18, normalized size = 0.72 \begin {gather*} -\frac {3}{2} \, x \log \left (\frac {15 \, x}{5 \, x + e^{2}}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 19, normalized size = 0.76
method | result | size |
norman | \(-\frac {3 x \ln \left (\frac {15 x}{{\mathrm e}^{2}+5 x}\right )}{2}+\ln \relax (x )\) | \(19\) |
risch | \(-\frac {3 x \ln \left (\frac {15 x}{{\mathrm e}^{2}+5 x}\right )}{2}+\ln \relax (x )\) | \(19\) |
derivativedivides | \(\frac {3 \,{\mathrm e}^{2} \left (\frac {10 \,{\mathrm e}^{-2} \ln \left (3-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right )}{3}-\frac {10 \,{\mathrm e}^{-2} \ln \left (-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right )}{3}-\frac {\ln \left (3-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right ) \left (3-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right ) {\mathrm e}^{-2} \left ({\mathrm e}^{2}+5 x \right )}{3}\right )}{10}\) | \(87\) |
default | \(\frac {3 \,{\mathrm e}^{2} \left (\frac {10 \,{\mathrm e}^{-2} \ln \left (3-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right )}{3}-\frac {10 \,{\mathrm e}^{-2} \ln \left (-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right )}{3}-\frac {\ln \left (3-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right ) \left (3-\frac {3 \,{\mathrm e}^{2}}{{\mathrm e}^{2}+5 x}\right ) {\mathrm e}^{-2} \left ({\mathrm e}^{2}+5 x \right )}{3}\right )}{10}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 68, normalized size = 2.72 \begin {gather*} -\frac {3}{2} \, x {\left (\log \relax (5) + \log \relax (3)\right )} - {\left (e^{\left (-2\right )} \log \left (5 \, x + e^{2}\right ) - e^{\left (-2\right )} \log \relax (x)\right )} e^{2} + \frac {3}{10} \, {\left (5 \, x + e^{2}\right )} \log \left (5 \, x + e^{2}\right ) - \frac {3}{10} \, e^{2} \log \left (5 \, x + e^{2}\right ) - \frac {3}{2} \, x \log \relax (x) + \log \left (5 \, x + e^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.91, size = 18, normalized size = 0.72 \begin {gather*} \ln \relax (x)-\frac {3\,x\,\ln \left (\frac {15\,x}{5\,x+{\mathrm {e}}^2}\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.76 \begin {gather*} - \frac {3 x \log {\left (\frac {15 x}{5 x + e^{2}} \right )}}{2} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________