Optimal. Leaf size=20 \[ 25 \left (\frac {1}{625} x \log (9)+2 (5 x+\log (x))\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 41, normalized size of antiderivative = 2.05, number of steps used = 7, number of rules used = 6, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {6, 12, 14, 2346, 2301, 2295} \begin {gather*} 100 \log ^2(x)+\frac {(x (6250+\log (9))+1250)^2}{15625}+\frac {4}{25} x (6250+\log (9)) \log (x)-\frac {4}{25} x (6250+\log (9)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2295
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15625000 x+\left (2500 x+25000 x^2\right ) \log (9)+x^2 \left (78125000+2 \log ^2(9)\right )+(3125000+15625000 x+2500 x \log (9)) \log (x)}{15625 x} \, dx\\ &=\frac {\int \frac {15625000 x+\left (2500 x+25000 x^2\right ) \log (9)+x^2 \left (78125000+2 \log ^2(9)\right )+(3125000+15625000 x+2500 x \log (9)) \log (x)}{x} \, dx}{15625}\\ &=\frac {\int \left (2 (6250+\log (9)) (1250+x (6250+\log (9)))+\frac {2500 (1250+x (6250+\log (9))) \log (x)}{x}\right ) \, dx}{15625}\\ &=\frac {(1250+x (6250+\log (9)))^2}{15625}+\frac {4}{25} \int \frac {(1250+x (6250+\log (9))) \log (x)}{x} \, dx\\ &=\frac {(1250+x (6250+\log (9)))^2}{15625}+200 \int \frac {\log (x)}{x} \, dx+\frac {1}{25} (4 (6250+\log (9))) \int \log (x) \, dx\\ &=-\frac {4}{25} x (6250+\log (9))+\frac {(1250+x (6250+\log (9)))^2}{15625}+\frac {4}{25} x (6250+\log (9)) \log (x)+100 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 46, normalized size = 2.30 \begin {gather*} 2500 x^2+\frac {4}{5} x^2 \log (9)+\frac {x^2 \log ^2(9)}{15625}+1000 x \log (x)+\frac {4}{25} x \log (9) \log (x)+100 \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 40, normalized size = 2.00 \begin {gather*} \frac {4}{15625} \, x^{2} \log \relax (3)^{2} + \frac {8}{5} \, x^{2} \log \relax (3) + 2500 \, x^{2} + \frac {8}{25} \, {\left (x \log \relax (3) + 3125 \, x\right )} \log \relax (x) + 100 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 31, normalized size = 1.55 \begin {gather*} \frac {4}{15625} \, {\left (\log \relax (3)^{2} + 6250 \, \log \relax (3) + 9765625\right )} x^{2} + \frac {8}{25} \, x {\left (\log \relax (3) + 3125\right )} \log \relax (x) + 100 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.70
method | result | size |
norman | \(\left (\frac {4 \ln \relax (3)^{2}}{15625}+\frac {8 \ln \relax (3)}{5}+2500\right ) x^{2}+\left (\frac {8 \ln \relax (3)}{25}+1000\right ) x \ln \relax (x )+100 \ln \relax (x )^{2}\) | \(34\) |
risch | \(100 \ln \relax (x )^{2}+\frac {8 \left (\ln \relax (3)+3125\right ) x \ln \relax (x )}{25}+\frac {4 x^{2} \ln \relax (3)^{2}}{15625}+\frac {8 x^{2} \ln \relax (3)}{5}+2500 x^{2}\) | \(38\) |
default | \(\frac {4 x^{2} \ln \relax (3)^{2}}{15625}+\frac {8 \ln \relax (3) \left (x \ln \relax (x )-x \right )}{25}+\frac {8 x^{2} \ln \relax (3)}{5}+1000 x \ln \relax (x )+\frac {8 x \ln \relax (3)}{25}+2500 x^{2}+100 \ln \relax (x )^{2}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 50, normalized size = 2.50 \begin {gather*} \frac {4}{15625} \, x^{2} \log \relax (3)^{2} + \frac {8}{5} \, x^{2} \log \relax (3) + 2500 \, x^{2} + \frac {8}{25} \, {\left (x \log \relax (x) - x\right )} \log \relax (3) + \frac {8}{25} \, x \log \relax (3) + 1000 \, x \log \relax (x) + 100 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.19, size = 16, normalized size = 0.80 \begin {gather*} \frac {4\,{\left (3125\,x+625\,\ln \relax (x)+x\,\ln \relax (3)\right )}^2}{15625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 41, normalized size = 2.05 \begin {gather*} x^{2} \left (\frac {4 \log {\relax (3 )}^{2}}{15625} + \frac {8 \log {\relax (3 )}}{5} + 2500\right ) + \left (\frac {8 x \log {\relax (3 )}}{25} + 1000 x\right ) \log {\relax (x )} + 100 \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________