Optimal. Leaf size=15 \[ \log \left (1-\frac {e+e^6}{4 x^3}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 19, normalized size of antiderivative = 1.27, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {6, 12, 1593, 266, 36, 31, 29} \begin {gather*} \log \left (e \left (1+e^5\right )-4 x^3\right )-3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 31
Rule 36
Rule 266
Rule 1593
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 e-3 e^6}{\left (e+e^6\right ) x-4 x^4} \, dx\\ &=-\left (\left (3 e \left (1+e^5\right )\right ) \int \frac {1}{\left (e+e^6\right ) x-4 x^4} \, dx\right )\\ &=-\left (\left (3 e \left (1+e^5\right )\right ) \int \frac {1}{x \left (e+e^6-4 x^3\right )} \, dx\right )\\ &=-\left (\left (e \left (1+e^5\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\left (e+e^6-4 x\right ) x} \, dx,x,x^3\right )\right )\\ &=-\left (4 \operatorname {Subst}\left (\int \frac {1}{e+e^6-4 x} \, dx,x,x^3\right )\right )-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^3\right )\\ &=-3 \log (x)+\log \left (e \left (1+e^5\right )-4 x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 1.07 \begin {gather*} -3 \log (x)+\log \left (e+e^6-4 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 20, normalized size = 1.33 \begin {gather*} \log \left (4 \, x^{3} - e^{6} - e\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 43, normalized size = 2.87 \begin {gather*} {\left (\frac {\log \left ({\left | 4 \, x^{3} - e^{6} - e \right |}\right )}{e^{6} + e} - \frac {3 \, \log \left ({\left | x \right |}\right )}{e^{6} + e}\right )} {\left (e^{6} + e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 17, normalized size = 1.13
method | result | size |
norman | \(-3 \ln \relax (x )+\ln \left (-4 x^{3}+{\mathrm e}+{\mathrm e}^{6}\right )\) | \(17\) |
default | \(\left (-3 \,{\mathrm e}^{6}-3 \,{\mathrm e}\right ) \left (-\frac {\ln \left (4 x^{3}-{\mathrm e}-{\mathrm e}^{6}\right )}{3 \left ({\mathrm e}^{6}+{\mathrm e}\right )}+\frac {\ln \relax (x )}{{\mathrm e}^{6}+{\mathrm e}}\right )\) | \(46\) |
risch | \(-\frac {3 \,{\mathrm e}^{-1} \ln \relax (x ) {\mathrm e}^{6}}{{\mathrm e}^{5}+1}-\frac {3 \,{\mathrm e}^{-1} \ln \relax (x ) {\mathrm e}}{{\mathrm e}^{5}+1}+\frac {{\mathrm e}^{-1} \ln \left (4 x^{3}-{\mathrm e}-{\mathrm e}^{6}\right ) {\mathrm e}^{6}}{{\mathrm e}^{5}+1}+\frac {{\mathrm e}^{-1} \ln \left (4 x^{3}-{\mathrm e}-{\mathrm e}^{6}\right ) {\mathrm e}}{{\mathrm e}^{5}+1}\) | \(82\) |
meijerg | \(-\frac {{\mathrm e}^{6} \left (3 \ln \relax (x )+2 \ln \relax (2)-\ln \left ({\mathrm e}^{6}+{\mathrm e}\right )+i \pi -\ln \left (1-\frac {4 x^{3}}{{\mathrm e}^{6}+{\mathrm e}}\right )\right )}{{\mathrm e}^{6}+{\mathrm e}}-\frac {{\mathrm e} \left (3 \ln \relax (x )+2 \ln \relax (2)-\ln \left ({\mathrm e}^{6}+{\mathrm e}\right )+i \pi -\ln \left (1-\frac {4 x^{3}}{{\mathrm e}^{6}+{\mathrm e}}\right )\right )}{{\mathrm e}^{6}+{\mathrm e}}\) | \(100\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 41, normalized size = 2.73 \begin {gather*} {\left (\frac {\log \left (4 \, x^{3} - e^{6} - e\right )}{e^{6} + e} - \frac {3 \, \log \relax (x)}{e^{6} + e}\right )} {\left (e^{6} + e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 18, normalized size = 1.20 \begin {gather*} \ln \left (x^3-\frac {\mathrm {e}}{4}-\frac {{\mathrm {e}}^6}{4}\right )-3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.79, size = 76, normalized size = 5.07 \begin {gather*} \left (3 e + 3 e^{6}\right ) \left (- \frac {\log {\relax (x )}}{e \left (1 + e\right ) \left (- e^{3} - e + 1 + e^{2} + e^{4}\right )} + \frac {\log {\left (x^{3} - \frac {e^{6}}{4} - \frac {e}{4} \right )}}{3 e \left (1 + e\right ) \left (- e^{3} - e + 1 + e^{2} + e^{4}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________