Optimal. Leaf size=32 \[ -3+2 x+\frac {\log \left (\frac {x}{4}+2 x^2\right )}{x \log (25 (-x+\log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 6.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-1-7 x+8 x^2\right ) \log \left (\frac {1}{4} \left (x+8 x^2\right )\right )+\left (-x-16 x^2+(1+16 x) \log (x)+\left (x+8 x^2+(-1-8 x) \log (x)\right ) \log \left (\frac {1}{4} \left (x+8 x^2\right )\right )\right ) \log (-25 x+25 \log (x))+\left (-2 x^3-16 x^4+\left (2 x^2+16 x^3\right ) \log (x)\right ) \log ^2(-25 x+25 \log (x))}{\left (-x^3-8 x^4+\left (x^2+8 x^3\right ) \log (x)\right ) \log ^2(-25 x+25 \log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {\log (25 (-x+\log (x))) \left (1+16 x+2 x^2 (1+8 x) \log (25 (-x+\log (x)))\right )}{1+8 x}-\frac {\log \left (\frac {1}{4} x (1+8 x)\right ) (-1+x+(x-\log (x)) \log (25 (-x+\log (x))))}{x-\log (x)}}{x^2 \log ^2(25 (-x+\log (x)))} \, dx\\ &=\int \left (2-\frac {(-1+x) \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))}+\frac {1+16 x-\log \left (\frac {1}{4} x (1+8 x)\right )-8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (1+8 x) \log (25 (-x+\log (x)))}\right ) \, dx\\ &=2 x-\int \frac {(-1+x) \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx+\int \frac {1+16 x-\log \left (\frac {1}{4} x (1+8 x)\right )-8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (1+8 x) \log (25 (-x+\log (x)))} \, dx\\ &=2 x-\int \left (-\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))}+\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))}\right ) \, dx+\int \frac {1+16 x-(1+8 x) \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (1+8 x) \log (25 (-x+\log (x)))} \, dx\\ &=2 x+\int \left (\frac {1+16 x-\log \left (\frac {1}{4} x (1+8 x)\right )-8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))}+\frac {8 \left (-1-16 x+\log \left (\frac {1}{4} x (1+8 x)\right )+8 x \log \left (\frac {1}{4} x (1+8 x)\right )\right )}{x \log (25 (-x+\log (x)))}-\frac {64 \left (-1-16 x+\log \left (\frac {1}{4} x (1+8 x)\right )+8 x \log \left (\frac {1}{4} x (1+8 x)\right )\right )}{(1+8 x) \log (25 (-x+\log (x)))}\right ) \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx\\ &=2 x+8 \int \frac {-1-16 x+\log \left (\frac {1}{4} x (1+8 x)\right )+8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{x \log (25 (-x+\log (x)))} \, dx-64 \int \frac {-1-16 x+\log \left (\frac {1}{4} x (1+8 x)\right )+8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx+\int \frac {1+16 x-\log \left (\frac {1}{4} x (1+8 x)\right )-8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))} \, dx\\ &=2 x+8 \int \frac {-1-16 x+(1+8 x) \log \left (\frac {1}{4} x (1+8 x)\right )}{x \log (25 (-x+\log (x)))} \, dx-64 \int \frac {-1-16 x+(1+8 x) \log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx+\int \frac {1+16 x-(1+8 x) \log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))} \, dx\\ &=2 x+8 \int \left (-\frac {16}{\log (25 (-x+\log (x)))}-\frac {1}{x \log (25 (-x+\log (x)))}+\frac {8 \log \left (\frac {1}{4} x (1+8 x)\right )}{\log (25 (-x+\log (x)))}+\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x \log (25 (-x+\log (x)))}\right ) \, dx-64 \int \left (-\frac {1}{(1+8 x) \log (25 (-x+\log (x)))}-\frac {16 x}{(1+8 x) \log (25 (-x+\log (x)))}+\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))}+\frac {8 x \log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))}\right ) \, dx+\int \left (\frac {1}{x^2 \log (25 (-x+\log (x)))}+\frac {16}{x \log (25 (-x+\log (x)))}-\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))}-\frac {8 \log \left (\frac {1}{4} x (1+8 x)\right )}{x \log (25 (-x+\log (x)))}\right ) \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx\\ &=2 x-8 \int \frac {1}{x \log (25 (-x+\log (x)))} \, dx+16 \int \frac {1}{x \log (25 (-x+\log (x)))} \, dx+64 \int \frac {1}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+64 \int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{\log (25 (-x+\log (x)))} \, dx-64 \int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))} \, dx-128 \int \frac {1}{\log (25 (-x+\log (x)))} \, dx-512 \int \frac {x \log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+1024 \int \frac {x}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx+\int \frac {1}{x^2 \log (25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))} \, dx\\ &=2 x-8 \int \frac {1}{x \log (25 (-x+\log (x)))} \, dx+16 \int \frac {1}{x \log (25 (-x+\log (x)))} \, dx+64 \int \frac {1}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+64 \int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{\log (25 (-x+\log (x)))} \, dx-64 \int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{(1+8 x) \log (25 (-x+\log (x)))} \, dx-128 \int \frac {1}{\log (25 (-x+\log (x)))} \, dx-512 \int \left (\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{8 \log (25 (-x+\log (x)))}-\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{8 (1+8 x) \log (25 (-x+\log (x)))}\right ) \, dx+1024 \int \left (\frac {1}{8 \log (25 (-x+\log (x)))}-\frac {1}{8 (1+8 x) \log (25 (-x+\log (x)))}\right ) \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx+\int \frac {1}{x^2 \log (25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))} \, dx\\ &=2 x-8 \int \frac {1}{x \log (25 (-x+\log (x)))} \, dx+16 \int \frac {1}{x \log (25 (-x+\log (x)))} \, dx+64 \int \frac {1}{(1+8 x) \log (25 (-x+\log (x)))} \, dx-128 \int \frac {1}{(1+8 x) \log (25 (-x+\log (x)))} \, dx+\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x (x-\log (x)) \log ^2(25 (-x+\log (x)))} \, dx+\int \frac {1}{x^2 \log (25 (-x+\log (x)))} \, dx-\int \frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x^2 \log (25 (-x+\log (x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 30, normalized size = 0.94 \begin {gather*} 2 x+\frac {\log \left (\frac {1}{4} x (1+8 x)\right )}{x \log (25 (-x+\log (x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 40, normalized size = 1.25 \begin {gather*} \frac {2 \, x^{2} \log \left (-25 \, x + 25 \, \log \relax (x)\right ) + \log \left (2 \, x^{2} + \frac {1}{4} \, x\right )}{x \log \left (-25 \, x + 25 \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 37, normalized size = 1.16 \begin {gather*} 2 \, x - \frac {2 \, \log \relax (2) - \log \left (8 \, x + 1\right ) - \log \relax (x)}{x \log \left (-25 \, x + 25 \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 114, normalized size = 3.56
method | result | size |
risch | \(2 x -\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x +\frac {1}{8}\right )\right ) \mathrm {csgn}\left (i x \left (x +\frac {1}{8}\right )\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x +\frac {1}{8}\right )\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (x +\frac {1}{8}\right )\right ) \mathrm {csgn}\left (i x \left (x +\frac {1}{8}\right )\right )^{2}+i \pi \mathrm {csgn}\left (i x \left (x +\frac {1}{8}\right )\right )^{3}+4 \ln \relax (2)-2 \ln \relax (x )-2 \ln \left (x +\frac {1}{8}\right )}{2 x \ln \left (25 \ln \relax (x )-25 x \right )}\) | \(114\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 50, normalized size = 1.56 \begin {gather*} \frac {4 \, x^{2} \log \relax (5) + 2 \, x^{2} \log \left (-x + \log \relax (x)\right ) - 2 \, \log \relax (2) + \log \left (8 \, x + 1\right ) + \log \relax (x)}{2 \, x \log \relax (5) + x \log \left (-x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.10, size = 183, normalized size = 5.72 \begin {gather*} 2\,x+\frac {\frac {\ln \left (2\,x^2+\frac {x}{4}\right )}{x}-\frac {\ln \left (25\,\ln \relax (x)-25\,x\right )\,\left (x-\ln \relax (x)\right )\,\left (16\,x-\ln \left (2\,x^2+\frac {x}{4}\right )-8\,x\,\ln \left (2\,x^2+\frac {x}{4}\right )+1\right )}{x\,\left (8\,x+1\right )\,\left (x-1\right )}}{\ln \left (25\,\ln \relax (x)-25\,x\right )}+\ln \left (2\,x^2+\frac {x}{4}\right )\,\left (\frac {1}{x-x^2}+\frac {x-1}{x-x^2}-\frac {\ln \relax (x)}{x-x^2}\right )-\frac {2\,x+\frac {1}{8}}{-x^2+\frac {7\,x}{8}+\frac {1}{8}}+\frac {\ln \relax (x)\,\left (2\,x+\frac {1}{8}\right )}{-x^3+\frac {7\,x^2}{8}+\frac {x}{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 24, normalized size = 0.75 \begin {gather*} 2 x + \frac {\log {\left (2 x^{2} + \frac {x}{4} \right )}}{x \log {\left (- 25 x + 25 \log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________