Optimal. Leaf size=22 \[ \frac {\left (-5-\frac {63}{16 x^2}\right ) (4+2 x+\log (4))}{4+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 40, normalized size of antiderivative = 1.82, number of steps used = 5, number of rules used = 4, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {1594, 27, 12, 1620} \begin {gather*} -\frac {63 (4+\log (4))}{64 x^2}+\frac {1343 (4-\log (4))}{256 (x+4)}-\frac {63 (4-\log (4))}{256 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2016+1260 x+252 x^2-320 x^3+\left (504+189 x+80 x^3\right ) \log (4)}{x^3 \left (256+128 x+16 x^2\right )} \, dx\\ &=\int \frac {2016+1260 x+252 x^2-320 x^3+\left (504+189 x+80 x^3\right ) \log (4)}{16 x^3 (4+x)^2} \, dx\\ &=\frac {1}{16} \int \frac {2016+1260 x+252 x^2-320 x^3+\left (504+189 x+80 x^3\right ) \log (4)}{x^3 (4+x)^2} \, dx\\ &=\frac {1}{16} \int \left (-\frac {63 (-4+\log (4))}{16 x^2}+\frac {1343 (-4+\log (4))}{16 (4+x)^2}+\frac {63 (4+\log (4))}{2 x^3}\right ) \, dx\\ &=-\frac {63 (4-\log (4))}{256 x}+\frac {1343 (4-\log (4))}{256 (4+x)}-\frac {63 (4+\log (4))}{64 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 36, normalized size = 1.64 \begin {gather*} \frac {-1008 x-504 (4+\log (4))+x^2 (2560-451 \log (4)-63 \log (64))}{128 x^2 (4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 34, normalized size = 1.55 \begin {gather*} \frac {160 \, x^{2} - {\left (80 \, x^{2} + 63\right )} \log \relax (2) - 63 \, x - 126}{8 \, {\left (x^{3} + 4 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 30, normalized size = 1.36 \begin {gather*} -\frac {1343 \, {\left (\log \relax (2) - 2\right )}}{128 \, {\left (x + 4\right )}} + \frac {63 \, {\left (x \log \relax (2) - 2 \, x - 4 \, \log \relax (2) - 8\right )}}{128 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.32
method | result | size |
norman | \(\frac {\left (20-10 \ln \relax (2)\right ) x^{2}-\frac {63 x}{8}-\frac {63 \ln \relax (2)}{8}-\frac {63}{4}}{x^{2} \left (4+x \right )}\) | \(29\) |
risch | \(\frac {\left (20-10 \ln \relax (2)\right ) x^{2}-\frac {63 x}{8}-\frac {63 \ln \relax (2)}{8}-\frac {63}{4}}{x^{2} \left (4+x \right )}\) | \(29\) |
gosper | \(-\frac {80 x^{2} \ln \relax (2)-160 x^{2}+63 \ln \relax (2)+63 x +126}{8 x^{2} \left (4+x \right )}\) | \(32\) |
default | \(-\frac {-\frac {63 \ln \relax (2)}{16}+\frac {63}{8}}{8 x}-\frac {\frac {63 \ln \relax (2)}{2}+63}{16 x^{2}}-\frac {\frac {1343 \ln \relax (2)}{16}-\frac {1343}{8}}{8 \left (4+x \right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 31, normalized size = 1.41 \begin {gather*} -\frac {80 \, x^{2} {\left (\log \relax (2) - 2\right )} + 63 \, x + 63 \, \log \relax (2) + 126}{8 \, {\left (x^{3} + 4 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 34, normalized size = 1.55 \begin {gather*} -\frac {\left (80\,\ln \relax (2)-160\right )\,x^2+63\,x+63\,\ln \relax (2)+126}{8\,x^3+32\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 31, normalized size = 1.41 \begin {gather*} - \frac {x^{2} \left (-160 + 80 \log {\relax (2 )}\right ) + 63 x + 63 \log {\relax (2 )} + 126}{8 x^{3} + 32 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________