Optimal. Leaf size=23 \[ 5-16 \left (e^{3+x+\log ^2(x)}+x\right )^2 \log (e (-1+x)) \]
________________________________________________________________________________________
Rubi [F] time = 7.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 x^3+\left (32 x^2-32 x^3\right ) \log (e (-1+x))+e^{6+2 x+2 \log ^2(x)} \left (-16 x+\log (e (-1+x)) \left (32 x-32 x^2+(64-64 x) \log (x)\right )\right )+e^{3+x+\log ^2(x)} \left (-32 x^2+\log (e (-1+x)) \left (32 x-32 x^3+\left (64 x-64 x^2\right ) \log (x)\right )\right )}{-x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x^3+\left (32 x^2-32 x^3\right ) \log (e (-1+x))+e^{6+2 x+2 \log ^2(x)} \left (-16 x+\log (e (-1+x)) \left (32 x-32 x^2+(64-64 x) \log (x)\right )\right )+e^{3+x+\log ^2(x)} \left (-32 x^2+\log (e (-1+x)) \left (32 x-32 x^3+\left (64 x-64 x^2\right ) \log (x)\right )\right )}{(-1+x) x} \, dx\\ &=\int \frac {16 \left (e^{3+x+\log ^2(x)}+x\right ) \left (x \left (e^{3+x+\log ^2(x)}+x\right )+2 (-1+x) (1+\log (-1+x)) \left (x+e^{3+x+\log ^2(x)} x+2 e^{3+x+\log ^2(x)} \log (x)\right )\right )}{(1-x) x} \, dx\\ &=16 \int \frac {\left (e^{3+x+\log ^2(x)}+x\right ) \left (x \left (e^{3+x+\log ^2(x)}+x\right )+2 (-1+x) (1+\log (-1+x)) \left (x+e^{3+x+\log ^2(x)} x+2 e^{3+x+\log ^2(x)} \log (x)\right )\right )}{(1-x) x} \, dx\\ &=16 \int \left (-\frac {x (-2+3 x-2 \log (-1+x)+2 x \log (-1+x))}{-1+x}-\frac {2 e^{3+x+\log ^2(x)} \left (-1+x+x^2-\log (-1+x)+x^2 \log (-1+x)-2 \log (x)+2 x \log (x)-2 \log (-1+x) \log (x)+2 x \log (-1+x) \log (x)\right )}{-1+x}+\frac {e^{2 \left (3+x+\log ^2(x)\right )} \left (-x+2 x^2-2 x \log (-1+x)+2 x^2 \log (-1+x)-4 \log (x)+4 x \log (x)-4 \log (-1+x) \log (x)+4 x \log (-1+x) \log (x)\right )}{(1-x) x}\right ) \, dx\\ &=-\left (16 \int \frac {x (-2+3 x-2 \log (-1+x)+2 x \log (-1+x))}{-1+x} \, dx\right )+16 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \left (-x+2 x^2-2 x \log (-1+x)+2 x^2 \log (-1+x)-4 \log (x)+4 x \log (x)-4 \log (-1+x) \log (x)+4 x \log (-1+x) \log (x)\right )}{(1-x) x} \, dx-32 \int \frac {e^{3+x+\log ^2(x)} \left (-1+x+x^2-\log (-1+x)+x^2 \log (-1+x)-2 \log (x)+2 x \log (x)-2 \log (-1+x) \log (x)+2 x \log (-1+x) \log (x)\right )}{-1+x} \, dx\\ &=-\left (16 \int \left (\frac {x (-2+3 x)}{-1+x}+2 x \log (-1+x)\right ) \, dx\right )+16 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} (x (-1+2 x)+4 (-1+x) \log (x)+2 (-1+x) \log (-1+x) (x+2 \log (x)))}{(1-x) x} \, dx-32 \int \left (\frac {e^{3+x+\log ^2(x)} \left (-1+x+x^2-\log (-1+x)+x^2 \log (-1+x)\right )}{-1+x}+2 e^{3+x+\log ^2(x)} (1+\log (-1+x)) \log (x)\right ) \, dx\\ &=-\left (16 \int \frac {x (-2+3 x)}{-1+x} \, dx\right )+16 \int \left (\frac {e^{2 \left (3+x+\log ^2(x)\right )} (1-2 x+2 \log (-1+x)-2 x \log (-1+x))}{-1+x}-\frac {4 e^{2 \left (3+x+\log ^2(x)\right )} (1+\log (-1+x)) \log (x)}{x}\right ) \, dx-32 \int x \log (-1+x) \, dx-32 \int \frac {e^{3+x+\log ^2(x)} \left (-1+x+x^2-\log (-1+x)+x^2 \log (-1+x)\right )}{-1+x} \, dx-64 \int e^{3+x+\log ^2(x)} (1+\log (-1+x)) \log (x) \, dx\\ &=-16 x^2 \log (-1+x)+16 \int \frac {x^2}{-1+x} \, dx-16 \int \left (1+\frac {1}{-1+x}+3 x\right ) \, dx+16 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} (1-2 x+2 \log (-1+x)-2 x \log (-1+x))}{-1+x} \, dx-32 \int \left (\frac {e^{3+x+\log ^2(x)} \left (-1+x+x^2\right )}{-1+x}+e^{3+x+\log ^2(x)} (1+x) \log (-1+x)\right ) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} (1+\log (-1+x)) \log (x)}{x} \, dx-64 \int \left (e^{3+x+\log ^2(x)} \log (x)+e^{3+x+\log ^2(x)} \log (-1+x) \log (x)\right ) \, dx\\ &=-16 x-24 x^2-16 \log (1-x)-16 x^2 \log (-1+x)+16 \int \left (1+\frac {1}{-1+x}+x\right ) \, dx+16 \int \left (\frac {e^{2 \left (3+x+\log ^2(x)\right )} (1-2 x)}{-1+x}-2 e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x)\right ) \, dx-32 \int \frac {e^{3+x+\log ^2(x)} \left (-1+x+x^2\right )}{-1+x} \, dx-32 \int e^{3+x+\log ^2(x)} (1+x) \log (-1+x) \, dx-64 \int e^{3+x+\log ^2(x)} \log (x) \, dx-64 \int e^{3+x+\log ^2(x)} \log (-1+x) \log (x) \, dx-64 \int \left (\frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (x)}{x}+\frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \log (x)}{x}\right ) \, dx\\ &=-16 x^2-16 x^2 \log (-1+x)+16 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} (1-2 x)}{-1+x} \, dx-32 \int \left (2 e^{3+x+\log ^2(x)}+\frac {e^{3+x+\log ^2(x)}}{-1+x}+e^{3+x+\log ^2(x)} x\right ) \, dx-32 \int e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \, dx-32 \int \left (e^{3+x+\log ^2(x)} \log (-1+x)+e^{3+x+\log ^2(x)} x \log (-1+x)\right ) \, dx-64 \int e^{3+x+\log ^2(x)} \log (x) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (x)}{x} \, dx-64 \int e^{3+x+\log ^2(x)} \log (-1+x) \log (x) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \log (x)}{x} \, dx\\ &=-16 x^2-16 x^2 \log (-1+x)+16 \int \left (-2 e^{2 \left (3+x+\log ^2(x)\right )}+\frac {e^{2 \left (3+x+\log ^2(x)\right )}}{1-x}\right ) \, dx-32 \int \frac {e^{3+x+\log ^2(x)}}{-1+x} \, dx-32 \int e^{3+x+\log ^2(x)} x \, dx-32 \int e^{3+x+\log ^2(x)} \log (-1+x) \, dx-32 \int e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \, dx-32 \int e^{3+x+\log ^2(x)} x \log (-1+x) \, dx-64 \int e^{3+x+\log ^2(x)} \, dx-64 \int e^{3+x+\log ^2(x)} \log (x) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (x)}{x} \, dx-64 \int e^{3+x+\log ^2(x)} \log (-1+x) \log (x) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \log (x)}{x} \, dx\\ &=-16 x^2-16 x^2 \log (-1+x)+16 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )}}{1-x} \, dx-32 \int e^{2 \left (3+x+\log ^2(x)\right )} \, dx-32 \int \frac {e^{3+x+\log ^2(x)}}{-1+x} \, dx-32 \int e^{3+x+\log ^2(x)} x \, dx-32 \int e^{3+x+\log ^2(x)} \log (-1+x) \, dx-32 \int e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \, dx-32 \int e^{3+x+\log ^2(x)} x \log (-1+x) \, dx-64 \int e^{3+x+\log ^2(x)} \, dx-64 \int e^{3+x+\log ^2(x)} \log (x) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (x)}{x} \, dx-64 \int e^{3+x+\log ^2(x)} \log (-1+x) \log (x) \, dx-64 \int \frac {e^{2 \left (3+x+\log ^2(x)\right )} \log (-1+x) \log (x)}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.20, size = 21, normalized size = 0.91 \begin {gather*} -16 \left (e^{3+x+\log ^2(x)}+x\right )^2 (1+\log (-1+x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 52, normalized size = 2.26 \begin {gather*} -16 \, x^{2} \log \left ({\left (x - 1\right )} e\right ) - 32 \, x e^{\left (\log \relax (x)^{2} + x + 3\right )} \log \left ({\left (x - 1\right )} e\right ) - 16 \, e^{\left (2 \, \log \relax (x)^{2} + 2 \, x + 6\right )} \log \left ({\left (x - 1\right )} e\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 73, normalized size = 3.17 \begin {gather*} -16 \, x^{2} \log \left (x - 1\right ) - 32 \, x e^{\left (\log \relax (x)^{2} + x + 3\right )} \log \left (x - 1\right ) - 16 \, x^{2} - 32 \, x e^{\left (\log \relax (x)^{2} + x + 3\right )} - 16 \, e^{\left (2 \, \log \relax (x)^{2} + 2 \, x + 6\right )} \log \left (x - 1\right ) - 16 \, e^{\left (2 \, \log \relax (x)^{2} + 2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 53, normalized size = 2.30
method | result | size |
risch | \(-16 x^{2} \ln \left (\left (x -1\right ) {\mathrm e}\right )-32 \ln \left (\left (x -1\right ) {\mathrm e}\right ) {\mathrm e}^{\ln \relax (x )^{2}+3+x} x -16 \ln \left (\left (x -1\right ) {\mathrm e}\right ) {\mathrm e}^{2 \ln \relax (x )^{2}+6+2 x}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 74, normalized size = 3.22 \begin {gather*} -16 \, x^{2} - 16 \, {\left (e^{\left (2 \, x + 6\right )} \log \left (x - 1\right ) + e^{\left (2 \, x + 6\right )}\right )} e^{\left (2 \, \log \relax (x)^{2}\right )} - 32 \, {\left (x e^{\left (x + 3\right )} \log \left (x - 1\right ) + x e^{\left (x + 3\right )}\right )} e^{\left (\log \relax (x)^{2}\right )} - 16 \, {\left (x^{2} - 1\right )} \log \left (x - 1\right ) - 16 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{2\,{\ln \relax (x)}^2+2\,x+6}\,\left (16\,x+\ln \left (\mathrm {e}\,\left (x-1\right )\right )\,\left (\ln \relax (x)\,\left (64\,x-64\right )-32\,x+32\,x^2\right )\right )-\ln \left (\mathrm {e}\,\left (x-1\right )\right )\,\left (32\,x^2-32\,x^3\right )+16\,x^3-{\mathrm {e}}^{{\ln \relax (x)}^2+x+3}\,\left (\ln \left (\mathrm {e}\,\left (x-1\right )\right )\,\left (32\,x+\ln \relax (x)\,\left (64\,x-64\,x^2\right )-32\,x^3\right )-32\,x^2\right )}{x-x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.52, size = 71, normalized size = 3.09 \begin {gather*} - 32 x e^{x + \log {\relax (x )}^{2} + 3} \log {\left (e \left (x - 1\right ) \right )} + \left (\frac {16}{3} - 16 x^{2}\right ) \log {\left (e \left (x - 1\right ) \right )} - 16 e^{2 x + 2 \log {\relax (x )}^{2} + 6} \log {\left (e \left (x - 1\right ) \right )} - \frac {16 \log {\left (3 x - 3 \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________