Optimal. Leaf size=27 \[ 5 \left (\log (2-2 x)+\left (3-2 \left (e^{-1+3 x}+\log \left (x^2\right )\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.15, antiderivative size = 53, normalized size of antiderivative = 1.96, number of steps used = 10, number of rules used = 6, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {1593, 6742, 2194, 2288, 72, 2301} \begin {gather*} 20 \log ^2\left (x^2\right )-\frac {20 e^{3 x-1} \left (3 x-2 x \log \left (x^2\right )\right )}{x}+20 e^{6 x-2}+5 \log (1-x)-120 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 1593
Rule 2194
Rule 2288
Rule 2301
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {120-115 x+e^{-1+3 x} \left (-80+260 x-180 x^2\right )+e^{-2+6 x} \left (-120 x+120 x^2\right )+\left (-80+80 x+e^{-1+3 x} \left (-120 x+120 x^2\right )\right ) \log \left (x^2\right )}{(-1+x) x} \, dx\\ &=\int \left (120 e^{-2+6 x}+\frac {20 e^{-1+3 x} \left (4-9 x+6 x \log \left (x^2\right )\right )}{x}+\frac {5 \left (24-23 x-16 \log \left (x^2\right )+16 x \log \left (x^2\right )\right )}{(-1+x) x}\right ) \, dx\\ &=5 \int \frac {24-23 x-16 \log \left (x^2\right )+16 x \log \left (x^2\right )}{(-1+x) x} \, dx+20 \int \frac {e^{-1+3 x} \left (4-9 x+6 x \log \left (x^2\right )\right )}{x} \, dx+120 \int e^{-2+6 x} \, dx\\ &=20 e^{-2+6 x}-\frac {20 e^{-1+3 x} \left (3 x-2 x \log \left (x^2\right )\right )}{x}+5 \int \left (\frac {24-23 x}{(-1+x) x}+\frac {16 \log \left (x^2\right )}{x}\right ) \, dx\\ &=20 e^{-2+6 x}-\frac {20 e^{-1+3 x} \left (3 x-2 x \log \left (x^2\right )\right )}{x}+5 \int \frac {24-23 x}{(-1+x) x} \, dx+80 \int \frac {\log \left (x^2\right )}{x} \, dx\\ &=20 e^{-2+6 x}+20 \log ^2\left (x^2\right )-\frac {20 e^{-1+3 x} \left (3 x-2 x \log \left (x^2\right )\right )}{x}+5 \int \left (\frac {1}{-1+x}-\frac {24}{x}\right ) \, dx\\ &=20 e^{-2+6 x}+5 \log (1-x)-120 \log (x)+20 \log ^2\left (x^2\right )-\frac {20 e^{-1+3 x} \left (3 x-2 x \log \left (x^2\right )\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 36, normalized size = 1.33 \begin {gather*} \frac {5 \left (e^2 \log (1-x)+\left (-3 e+2 e^{3 x}+2 e \log \left (x^2\right )\right )^2\right )}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 47, normalized size = 1.74 \begin {gather*} 40 \, e^{\left (3 \, x - 1\right )} \log \left (x^{2}\right ) + 20 \, \log \left (x^{2}\right )^{2} + 20 \, e^{\left (6 \, x - 2\right )} - 60 \, e^{\left (3 \, x - 1\right )} + 5 \, \log \left (x - 1\right ) - 120 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 56, normalized size = 2.07 \begin {gather*} 5 \, {\left (4 \, e^{3} \log \left (x^{2}\right )^{2} + 8 \, e^{\left (3 \, x + 2\right )} \log \left (x^{2}\right ) + e^{3} \log \left (x - 1\right ) - 24 \, e^{3} \log \relax (x) + 4 \, e^{\left (6 \, x + 1\right )} - 12 \, e^{\left (3 \, x + 2\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 52, normalized size = 1.93
method | result | size |
norman | \(-60 \ln \left (x^{2}\right )+20 \,{\mathrm e}^{6 x -2}+20 \ln \left (x^{2}\right )^{2}+40 \,{\mathrm e}^{3 x -1} \ln \left (x^{2}\right )-60 \,{\mathrm e}^{3 x -1}+5 \ln \left (x -1\right )\) | \(52\) |
default | \(40 \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right ) {\mathrm e}^{3 x -1}-60 \,{\mathrm e}^{3 x -1}+80 \ln \relax (x ) {\mathrm e}^{3 x -1}+20 \,{\mathrm e}^{6 x -2}+20 \ln \left (x^{2}\right )^{2}-120 \ln \relax (x )+5 \ln \left (x -1\right )\) | \(65\) |
risch | \(80 \ln \relax (x )^{2}+80 \ln \relax (x ) {\mathrm e}^{3 x -1}-40 i \pi \ln \left (\left (-8 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+25 i\right ) x \right ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+80 i \pi \ln \left (\left (-8 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+25 i\right ) x \right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-40 i \pi \ln \left (\left (-8 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+25 i\right ) x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3}-120 \ln \left (\left (-8 \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+25 i\right ) x \right )+5 \ln \left (1-x \right )+20 \,{\mathrm e}^{6 x -2}-20 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{3 x -1}+40 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{3 x -1}-20 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{3 x -1}-60 \,{\mathrm e}^{3 x -1}\) | \(368\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 44, normalized size = 1.63 \begin {gather*} 20 \, {\left (4 \, e^{2} \log \relax (x)^{2} + {\left (4 \, e \log \relax (x) - 3 \, e\right )} e^{\left (3 \, x\right )} + e^{\left (6 \, x\right )}\right )} e^{\left (-2\right )} + 5 \, \log \left (x - 1\right ) - 120 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.72, size = 49, normalized size = 1.81 \begin {gather*} 5\,\ln \left (x-1\right )-60\,\ln \left (x^2\right )-60\,{\mathrm {e}}^{3\,x-1}+20\,{\mathrm {e}}^{6\,x-2}+40\,\ln \left (x^2\right )\,{\mathrm {e}}^{3\,x-1}+20\,{\ln \left (x^2\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 42, normalized size = 1.56 \begin {gather*} \left (40 \log {\left (x^{2} \right )} - 60\right ) e^{3 x - 1} + 20 e^{6 x - 2} - 120 \log {\relax (x )} + 20 \log {\left (x^{2} \right )}^{2} + 5 \log {\left (x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________