Optimal. Leaf size=16 \[ -e^x+\frac {5}{x}+\frac {x}{e} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 14, 2194} \begin {gather*} \frac {x}{e}-e^x+\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-5 e+x^2-e^{1+x} x^2}{x^2} \, dx}{e}\\ &=\frac {\int \left (-e^{1+x}+\frac {-5 e+x^2}{x^2}\right ) \, dx}{e}\\ &=-\frac {\int e^{1+x} \, dx}{e}+\frac {\int \frac {-5 e+x^2}{x^2} \, dx}{e}\\ &=-e^x+\frac {\int \left (1-\frac {5 e}{x^2}\right ) \, dx}{e}\\ &=-e^x+\frac {5}{x}+\frac {x}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 1.00 \begin {gather*} -e^x+\frac {5}{x}+\frac {x}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.43, size = 21, normalized size = 1.31 \begin {gather*} \frac {{\left (x^{2} - x e^{\left (x + 1\right )} + 5 \, e\right )} e^{\left (-1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 21, normalized size = 1.31 \begin {gather*} \frac {{\left (x^{2} - x e^{\left (x + 1\right )} + 5 \, e\right )} e^{\left (-1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.94
method | result | size |
risch | \({\mathrm e}^{-1} x +\frac {5}{x}-{\mathrm e}^{x}\) | \(15\) |
norman | \(\frac {5+x^{2} {\mathrm e}^{-1}-{\mathrm e}^{x} x}{x}\) | \(20\) |
default | \({\mathrm e}^{-1} \left (x +\frac {5 \,{\mathrm e}}{x}-{\mathrm e} \,{\mathrm e}^{x}\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 18, normalized size = 1.12 \begin {gather*} {\left (x + \frac {5 \, e}{x} - e^{\left (x + 1\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 14, normalized size = 0.88 \begin {gather*} x\,{\mathrm {e}}^{-1}-{\mathrm {e}}^x+\frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.88 \begin {gather*} \frac {x + \frac {5 e}{x}}{e} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________