Optimal. Leaf size=29 \[ 3+4 e^{-e^{5+x+\frac {e^x}{4 \left (4+x+x^2\right )}}} x \]
________________________________________________________________________________________
Rubi [B] time = 5.40, antiderivative size = 156, normalized size of antiderivative = 5.38, number of steps used = 1, number of rules used = 1, integrand size = 152, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {2288} \begin {gather*} \frac {4 \left (4 x^5+8 x^4+36 x^3+32 x^2+e^x \left (x^3-x^2+3 x\right )+64 x\right ) \exp \left (-e^{\frac {4 x^3+24 x^2+36 x+e^x+80}{4 \left (x^2+x+4\right )}}\right )}{\left (x^4+2 x^3+9 x^2+8 x+16\right ) \left (\frac {12 x^2+48 x+e^x+36}{x^2+x+4}-\frac {(2 x+1) \left (4 x^3+24 x^2+36 x+e^x+80\right )}{\left (x^2+x+4\right )^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 \exp \left (-e^{\frac {80+e^x+36 x+24 x^2+4 x^3}{4 \left (4+x+x^2\right )}}\right ) \left (64 x+32 x^2+36 x^3+8 x^4+4 x^5+e^x \left (3 x-x^2+x^3\right )\right )}{\left (16+8 x+9 x^2+2 x^3+x^4\right ) \left (\frac {36+e^x+48 x+12 x^2}{4+x+x^2}-\frac {(1+2 x) \left (80+e^x+36 x+24 x^2+4 x^3\right )}{\left (4+x+x^2\right )^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 27, normalized size = 0.93 \begin {gather*} 4 e^{-e^{5+x+\frac {e^x}{4 \left (4+x+x^2\right )}}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 34, normalized size = 1.17 \begin {gather*} 4 \, x e^{\left (-e^{\left (\frac {4 \, x^{3} + 24 \, x^{2} + 36 \, x + e^{x} + 80}{4 \, {\left (x^{2} + x + 4\right )}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x^{4} + 8 \, x^{3} + 36 \, x^{2} - {\left (4 \, x^{5} + 8 \, x^{4} + 36 \, x^{3} + 32 \, x^{2} + {\left (x^{3} - x^{2} + 3 \, x\right )} e^{x} + 64 \, x\right )} e^{\left (\frac {4 \, x^{3} + 24 \, x^{2} + 36 \, x + e^{x} + 80}{4 \, {\left (x^{2} + x + 4\right )}}\right )} + 32 \, x + 64\right )} e^{\left (-e^{\left (\frac {4 \, x^{3} + 24 \, x^{2} + 36 \, x + e^{x} + 80}{4 \, {\left (x^{2} + x + 4\right )}}\right )}\right )}}{x^{4} + 2 \, x^{3} + 9 \, x^{2} + 8 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 35, normalized size = 1.21
method | result | size |
risch | \(4 x \,{\mathrm e}^{-{\mathrm e}^{\frac {{\mathrm e}^{x}+4 x^{3}+24 x^{2}+36 x +80}{4 x^{2}+4 x +16}}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4 \, {\left ({\left (x^{3} - x^{2} + 3 \, x\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{5} + 2 \, x^{4} + 9 \, x^{3} + 8 \, x^{2} + 16 \, x\right )} e^{x}\right )} e^{\left (-e^{\left (x + \frac {e^{x}}{4 \, {\left (x^{2} + x + 4\right )}} + 5\right )}\right )}}{{\left (x^{2} - x + 3\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{4} + 2 \, x^{3} + 9 \, x^{2} + 8 \, x + 16\right )} e^{x}} - \int -\frac {4 \, {\left ({\left (x^{4} - 2 \, x^{3} + 7 \, x^{2} - 6 \, x + 9\right )} e^{\left (3 \, x\right )} - {\left (4 \, x^{7} + 48 \, x^{5} + 28 \, x^{4} + 156 \, x^{3} + 84 \, x^{2} + {\left (x^{4} - 2 \, x^{3} + 7 \, x^{2} - 6 \, x + 9\right )} e^{x} + 64 \, x + 192\right )} e^{\left (2 \, x\right )} + 8 \, {\left (x^{6} + x^{5} + 10 \, x^{4} + 5 \, x^{3} + 35 \, x^{2} + 8 \, x + 48\right )} e^{\left (2 \, x\right )} - 4 \, {\left (4 \, x^{8} + 16 \, x^{7} + 88 \, x^{6} + 208 \, x^{5} + 580 \, x^{4} + 832 \, x^{3} + 1408 \, x^{2} - {\left (x^{7} - 2 \, x^{6} + 10 \, x^{5} - 13 \, x^{4} + 29 \, x^{3} - 49 \, x^{2} - 48\right )} e^{x} + 1024 \, x + 1024\right )} e^{x} + 16 \, {\left (x^{8} + 4 \, x^{7} + 22 \, x^{6} + 52 \, x^{5} + 145 \, x^{4} + 208 \, x^{3} + 352 \, x^{2} + 256 \, x + 256\right )} e^{x}\right )} e^{\left (-e^{\left (x + \frac {e^{x}}{4 \, {\left (x^{2} + x + 4\right )}} + 5\right )}\right )}}{{\left (x^{4} - 2 \, x^{3} + 7 \, x^{2} - 6 \, x + 9\right )} e^{\left (3 \, x\right )} + 8 \, {\left (x^{6} + x^{5} + 10 \, x^{4} + 5 \, x^{3} + 35 \, x^{2} + 8 \, x + 48\right )} e^{\left (2 \, x\right )} + 16 \, {\left (x^{8} + 4 \, x^{7} + 22 \, x^{6} + 52 \, x^{5} + 145 \, x^{4} + 208 \, x^{3} + 352 \, x^{2} + 256 \, x + 256\right )} e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.51, size = 72, normalized size = 2.48 \begin {gather*} 4\,x\,{\mathrm {e}}^{-{\mathrm {e}}^{\frac {9\,x}{x^2+x+4}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{4\,x^2+4\,x+16}}\,{\mathrm {e}}^{\frac {x^3}{x^2+x+4}}\,{\mathrm {e}}^{\frac {6\,x^2}{x^2+x+4}}\,{\mathrm {e}}^{\frac {20}{x^2+x+4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________