Optimal. Leaf size=27 \[ 3-2 x-e^x x \log \left (e^{-x} x\right )-\log ^2\left (x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {14, 2288, 2301} \begin {gather*} -\log ^2\left (x^2\right )-2 x-e^x x \log \left (e^{-x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rule 2301
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^x \left (1-x+\log \left (e^{-x} x\right )+x \log \left (e^{-x} x\right )\right )-\frac {2 \left (x+2 \log \left (x^2\right )\right )}{x}\right ) \, dx\\ &=-\left (2 \int \frac {x+2 \log \left (x^2\right )}{x} \, dx\right )-\int e^x \left (1-x+\log \left (e^{-x} x\right )+x \log \left (e^{-x} x\right )\right ) \, dx\\ &=-e^x x \log \left (e^{-x} x\right )-2 \int \left (1+\frac {2 \log \left (x^2\right )}{x}\right ) \, dx\\ &=-2 x-e^x x \log \left (e^{-x} x\right )-4 \int \frac {\log \left (x^2\right )}{x} \, dx\\ &=-2 x-e^x x \log \left (e^{-x} x\right )-\log ^2\left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 0.96 \begin {gather*} -2 x-e^x x \log \left (e^{-x} x\right )-\log ^2\left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 27, normalized size = 1.00 \begin {gather*} x^{2} e^{x} - \frac {1}{2} \, x e^{x} \log \left (x^{2}\right ) - \log \left (x^{2}\right )^{2} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 25, normalized size = 0.93 \begin {gather*} x^{2} e^{x} - x e^{x} \log \relax (x) - \log \left (x^{2}\right )^{2} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 0.93
method | result | size |
default | \(-2 x -{\mathrm e}^{x} \ln \left (x \,{\mathrm e}^{-x}\right ) x -\ln \left (x^{2}\right )^{2}\) | \(25\) |
risch | \({\mathrm e}^{x} x \ln \left ({\mathrm e}^{x}\right )-4 \ln \relax (x )^{2}-x \,{\mathrm e}^{x} \ln \relax (x )-2 x +2 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\frac {i {\mathrm e}^{x} \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2}}{2}+\frac {i {\mathrm e}^{x} \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )}{2}+\frac {i {\mathrm e}^{x} \pi x \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{3}}{2}-\frac {i {\mathrm e}^{x} \pi x \mathrm {csgn}\left (i x \,{\mathrm e}^{-x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x}\right )}{2}\) | \(176\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 38, normalized size = 1.41 \begin {gather*} {\left (x^{2} - x \log \relax (x) - x + 2\right )} e^{x} + {\left (x - 1\right )} e^{x} - \log \left (x^{2}\right )^{2} - 2 \, x - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.55, size = 34, normalized size = 1.26 \begin {gather*} -{\ln \left (x^2\right )}^2-2\,x-{\mathrm {e}}^x\,\left (x+x\,\ln \relax (x)-x^2-2\right )+{\mathrm {e}}^x\,\left (x-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 26, normalized size = 0.96 \begin {gather*} - 2 x + \frac {\left (2 x^{2} - x \log {\left (x^{2} \right )}\right ) e^{x}}{2} - \log {\left (x^{2} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________