Optimal. Leaf size=31 \[ e+\frac {3}{4 x}-\frac {x^2}{4-x}-\frac {1}{4} e \left (4+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 26, normalized size of antiderivative = 0.84, number of steps used = 6, number of rules used = 5, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2055, 1594, 27, 12, 1620} \begin {gather*} -\frac {e x^2}{4}+x-\frac {16}{4-x}+\frac {3}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rule 2055
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-48+24 x-3 x^2+(-32-32 e) x^3+(4+16 e) x^4-2 e x^5}{64 x^2-32 x^3+4 x^4} \, dx\\ &=\int \frac {-48+24 x-3 x^2+(-32-32 e) x^3+(4+16 e) x^4-2 e x^5}{x^2 \left (64-32 x+4 x^2\right )} \, dx\\ &=\int \frac {-48+24 x-3 x^2+(-32-32 e) x^3+(4+16 e) x^4-2 e x^5}{4 (-4+x)^2 x^2} \, dx\\ &=\frac {1}{4} \int \frac {-48+24 x-3 x^2+(-32-32 e) x^3+(4+16 e) x^4-2 e x^5}{(-4+x)^2 x^2} \, dx\\ &=\frac {1}{4} \int \left (4-\frac {64}{(-4+x)^2}-\frac {3}{x^2}-2 e x\right ) \, dx\\ &=-\frac {16}{4-x}+\frac {3}{4 x}+x-\frac {e x^2}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 0.84 \begin {gather*} \frac {1}{4} \left (\frac {64}{-4+x}+\frac {3}{x}+4 x-e x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 39, normalized size = 1.26 \begin {gather*} \frac {4 \, x^{3} - 16 \, x^{2} - {\left (x^{4} - 4 \, x^{3}\right )} e + 67 \, x - 12}{4 \, {\left (x^{2} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 0.81 \begin {gather*} -\frac {1}{4} \, x^{2} e + x + \frac {67 \, x - 12}{4 \, {\left (x^{2} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.71
method | result | size |
default | \(x +\frac {3}{4 x}+\frac {16}{x -4}-\frac {x^{2} {\mathrm e}}{4}\) | \(22\) |
risch | \(-\frac {x^{2} {\mathrm e}}{4}+x +\frac {\frac {67 x}{4}-3}{\left (x -4\right ) x}\) | \(24\) |
norman | \(\frac {-3+\left (1+{\mathrm e}\right ) x^{3}+\frac {3 x}{4}-\frac {x^{4} {\mathrm e}}{4}}{\left (x -4\right ) x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 25, normalized size = 0.81 \begin {gather*} -\frac {1}{4} \, x^{2} e + x + \frac {67 \, x - 12}{4 \, {\left (x^{2} - 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 23, normalized size = 0.74 \begin {gather*} x-\frac {x^2\,\mathrm {e}}{4}+\frac {\frac {67\,x}{4}-3}{x\,\left (x-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.71 \begin {gather*} - \frac {e x^{2}}{4} + x - \frac {12 - 67 x}{4 x^{2} - 16 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________