Optimal. Leaf size=31 \[ 3 \left (\frac {2}{x}+\log \left (2+\left (3+2 \left (4+e^2+\frac {x}{4}\right )\right ) (5-x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 34, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 2, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {2074, 628} \begin {gather*} 3 \log \left (-x^2-\left (17+4 e^2\right ) x+2 \left (57+10 e^2\right )\right )+\frac {6}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {6}{x^2}+\frac {3 \left (-17-4 e^2-2 x\right )}{2 \left (57+10 e^2\right )-\left (17+4 e^2\right ) x-x^2}\right ) \, dx\\ &=\frac {6}{x}+3 \int \frac {-17-4 e^2-2 x}{2 \left (57+10 e^2\right )+\left (-17-4 e^2\right ) x-x^2} \, dx\\ &=\frac {6}{x}+3 \log \left (2 \left (57+10 e^2\right )-\left (17+4 e^2\right ) x-x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 30, normalized size = 0.97 \begin {gather*} 3 \left (\frac {2}{x}+\log \left (114+20 e^2-17 x-4 e^2 x-x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 25, normalized size = 0.81 \begin {gather*} \frac {3 \, {\left (x \log \left (x^{2} + 4 \, {\left (x - 5\right )} e^{2} + 17 \, x - 114\right ) + 2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.49, size = 27, normalized size = 0.87 \begin {gather*} \frac {6}{x} + 3 \, \log \left ({\left | x^{2} + 4 \, x e^{2} + 17 \, x - 20 \, e^{2} - 114 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 0.87
method | result | size |
default | \(\frac {6}{x}+3 \ln \left (4 \,{\mathrm e}^{2} x +x^{2}-20 \,{\mathrm e}^{2}+17 x -114\right )\) | \(27\) |
norman | \(\frac {6}{x}+3 \ln \left (4 \,{\mathrm e}^{2} x +x^{2}-20 \,{\mathrm e}^{2}+17 x -114\right )\) | \(27\) |
risch | \(\frac {6}{x}+3 \ln \left (x^{2}+\left (4 \,{\mathrm e}^{2}+17\right ) x -20 \,{\mathrm e}^{2}-114\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 26, normalized size = 0.84 \begin {gather*} \frac {6}{x} + 3 \, \log \left (x^{2} + x {\left (4 \, e^{2} + 17\right )} - 20 \, e^{2} - 114\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 26, normalized size = 0.84 \begin {gather*} 3\,\ln \left (x^2+\left (4\,{\mathrm {e}}^2+17\right )\,x-20\,{\mathrm {e}}^2-114\right )+\frac {6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 24, normalized size = 0.77 \begin {gather*} 3 \log {\left (x^{2} + x \left (17 + 4 e^{2}\right ) - 20 e^{2} - 114 \right )} + \frac {6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________