Optimal. Leaf size=21 \[ \frac {18 x}{5 \left (-2+e^x+x (3+x)-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-18+e^x (18-18 x)-18 x^2-18 \log (x)}{20+5 e^{2 x}-60 x+25 x^2+30 x^3+5 x^4+e^x \left (-20+30 x+10 x^2\right )+\left (20-10 e^x-30 x-10 x^2\right ) \log (x)+5 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 \left (-1-e^x (-1+x)-x^2-\log (x)\right )}{5 \left (2-e^x-3 x-x^2+\log (x)\right )^2} \, dx\\ &=\frac {18}{5} \int \frac {-1-e^x (-1+x)-x^2-\log (x)}{\left (2-e^x-3 x-x^2+\log (x)\right )^2} \, dx\\ &=\frac {18}{5} \int \left (-\frac {-1+x}{-2+e^x+3 x+x^2-\log (x)}+\frac {1-5 x+x^2+x^3-x \log (x)}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2}\right ) \, dx\\ &=-\left (\frac {18}{5} \int \frac {-1+x}{-2+e^x+3 x+x^2-\log (x)} \, dx\right )+\frac {18}{5} \int \frac {1-5 x+x^2+x^3-x \log (x)}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2} \, dx\\ &=-\left (\frac {18}{5} \int \left (-\frac {1}{-2+e^x+3 x+x^2-\log (x)}+\frac {x}{-2+e^x+3 x+x^2-\log (x)}\right ) \, dx\right )+\frac {18}{5} \int \left (\frac {1}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2}-\frac {5 x}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2}+\frac {x^2}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2}+\frac {x^3}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2}-\frac {x \log (x)}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2}\right ) \, dx\\ &=\frac {18}{5} \int \frac {1}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2} \, dx+\frac {18}{5} \int \frac {x^2}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2} \, dx+\frac {18}{5} \int \frac {x^3}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2} \, dx+\frac {18}{5} \int \frac {1}{-2+e^x+3 x+x^2-\log (x)} \, dx-\frac {18}{5} \int \frac {x}{-2+e^x+3 x+x^2-\log (x)} \, dx-\frac {18}{5} \int \frac {x \log (x)}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2} \, dx-18 \int \frac {x}{\left (-2+e^x+3 x+x^2-\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 24, normalized size = 1.14 \begin {gather*} -\frac {18 x}{5 \left (2-e^x-3 x-x^2+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 19, normalized size = 0.90 \begin {gather*} \frac {18 \, x}{5 \, {\left (x^{2} + 3 \, x + e^{x} - \log \relax (x) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 19, normalized size = 0.90 \begin {gather*} \frac {18 \, x}{5 \, {\left (x^{2} + 3 \, x + e^{x} - \log \relax (x) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.95
method | result | size |
risch | \(\frac {18 x}{5 \left (x^{2}+3 x +{\mathrm e}^{x}-\ln \relax (x )-2\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 19, normalized size = 0.90 \begin {gather*} \frac {18 \, x}{5 \, {\left (x^{2} + 3 \, x + e^{x} - \log \relax (x) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 23, normalized size = 1.10 \begin {gather*} \frac {18\,x}{5\,\left (3\,x+{\mathrm {e}}^x-\ln \relax (x)+x^2-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 1.05 \begin {gather*} \frac {18 x}{5 x^{2} + 15 x + 5 e^{x} - 5 \log {\relax (x )} - 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________