Optimal. Leaf size=22 \[ \frac {2 e^{4-x}}{5 x^2 \log \left (\frac {4}{x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4-x} \left (4+(-4-2 x) \log \left (\frac {4}{x^2}\right )\right )}{5 x^3 \log ^2\left (\frac {4}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{4-x} \left (4+(-4-2 x) \log \left (\frac {4}{x^2}\right )\right )}{x^3 \log ^2\left (\frac {4}{x^2}\right )} \, dx\\ &=\frac {1}{5} \int \left (\frac {4 e^{4-x}}{x^3 \log ^2\left (\frac {4}{x^2}\right )}-\frac {2 e^{4-x} (2+x)}{x^3 \log \left (\frac {4}{x^2}\right )}\right ) \, dx\\ &=-\left (\frac {2}{5} \int \frac {e^{4-x} (2+x)}{x^3 \log \left (\frac {4}{x^2}\right )} \, dx\right )+\frac {4}{5} \int \frac {e^{4-x}}{x^3 \log ^2\left (\frac {4}{x^2}\right )} \, dx\\ &=-\left (\frac {2}{5} \int \left (\frac {2 e^{4-x}}{x^3 \log \left (\frac {4}{x^2}\right )}+\frac {e^{4-x}}{x^2 \log \left (\frac {4}{x^2}\right )}\right ) \, dx\right )+\frac {4}{5} \int \frac {e^{4-x}}{x^3 \log ^2\left (\frac {4}{x^2}\right )} \, dx\\ &=-\left (\frac {2}{5} \int \frac {e^{4-x}}{x^2 \log \left (\frac {4}{x^2}\right )} \, dx\right )+\frac {4}{5} \int \frac {e^{4-x}}{x^3 \log ^2\left (\frac {4}{x^2}\right )} \, dx-\frac {4}{5} \int \frac {e^{4-x}}{x^3 \log \left (\frac {4}{x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 22, normalized size = 1.00 \begin {gather*} \frac {2 e^{4-x}}{5 x^2 \log \left (\frac {4}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 19, normalized size = 0.86 \begin {gather*} \frac {2 \, e^{\left (-x + 4\right )}}{5 \, x^{2} \log \left (\frac {4}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 19, normalized size = 0.86 \begin {gather*} \frac {2 \, e^{\left (-x + 4\right )}}{5 \, x^{2} \log \left (\frac {4}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 72, normalized size = 3.27
method | result | size |
risch | \(\frac {4 i {\mathrm e}^{-x +4}}{5 x^{2} \left (-4 i \ln \relax (x )-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (2)\right )}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 24, normalized size = 1.09 \begin {gather*} \frac {e^{\left (-x + 4\right )}}{5 \, {\left (x^{2} \log \relax (2) - x^{2} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.82, size = 19, normalized size = 0.86 \begin {gather*} \frac {2\,{\mathrm {e}}^{4-x}}{5\,x^2\,\ln \left (\frac {4}{x^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 0.77 \begin {gather*} \frac {2 e^{4 - x}}{5 x^{2} \log {\left (\frac {4}{x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________