Optimal. Leaf size=24 \[ \log \left (e^3+2 e^{4+\frac {x^2}{e^2}} x \left (3+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {4 e^2+x^2+e^2 \log (x)}{e^2}} \left (12 x^2+4 x^4+e^2 \left (6+6 x^2\right )\right )}{e^5 x+e^{2+\frac {4 e^2+x^2+e^2 \log (x)}{e^2}} \left (6 x+2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {4 e^2+x^2}{e^2}} x \left (12 x^2+4 x^4+e^2 \left (6+6 x^2\right )\right )}{e^5 x+e^{2+\frac {4 e^2+x^2+e^2 \log (x)}{e^2}} \left (6 x+2 x^3\right )} \, dx\\ &=\int \frac {6 e^2+6 \left (2+e^2\right ) x^2+4 x^4}{e \left (e^{-\frac {x^2}{e^2}}+2 e x \left (3+x^2\right )\right )} \, dx\\ &=\frac {\int \frac {6 e^2+6 \left (2+e^2\right ) x^2+4 x^4}{e^{-\frac {x^2}{e^2}}+2 e x \left (3+x^2\right )} \, dx}{e}\\ &=\frac {\int \left (\frac {-3 e^2-3 \left (2+e^2\right ) x^2-2 x^4}{e x \left (3+x^2\right ) \left (1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3\right )}+\frac {3 e^2+3 \left (2+e^2\right ) x^2+2 x^4}{e x \left (3+x^2\right )}\right ) \, dx}{e}\\ &=\frac {\int \frac {-3 e^2-3 \left (2+e^2\right ) x^2-2 x^4}{x \left (3+x^2\right ) \left (1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3\right )} \, dx}{e^2}+\frac {\int \frac {3 e^2+3 \left (2+e^2\right ) x^2+2 x^4}{x \left (3+x^2\right )} \, dx}{e^2}\\ &=\frac {\operatorname {Subst}\left (\int \frac {3 e^2+3 \left (2+e^2\right ) x+2 x^2}{x (3+x)} \, dx,x,x^2\right )}{2 e^2}+\frac {\int \frac {-3 e^2-3 \left (2+e^2\right ) x^2-2 x^4}{x \left (3+x^2\right ) \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx}{e^2}\\ &=\frac {\operatorname {Subst}\left (\int \left (2+\frac {e^2}{x}+\frac {2 e^2}{3+x}\right ) \, dx,x,x^2\right )}{2 e^2}+\frac {\int \left (-\frac {e^2}{x \left (1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3\right )}-\frac {2 x}{1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3}-\frac {2 e^2 x}{\left (3+x^2\right ) \left (1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3\right )}\right ) \, dx}{e^2}\\ &=\frac {x^2}{e^2}+\log (x)+\log \left (3+x^2\right )-2 \int \frac {x}{\left (3+x^2\right ) \left (1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3\right )} \, dx-\frac {2 \int \frac {x}{1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3} \, dx}{e^2}-\int \frac {1}{x \left (1+6 e^{1+\frac {x^2}{e^2}} x+2 e^{1+\frac {x^2}{e^2}} x^3\right )} \, dx\\ &=\frac {x^2}{e^2}+\log (x)+\log \left (3+x^2\right )-2 \int \frac {x}{\left (3+x^2\right ) \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx-\frac {2 \int \frac {x}{1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )} \, dx}{e^2}-\int \frac {1}{x \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx\\ &=\frac {x^2}{e^2}+\log (x)+\log \left (3+x^2\right )-2 \int \left (-\frac {1}{2 \left (i \sqrt {3}-x\right ) \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )}+\frac {1}{2 \left (i \sqrt {3}+x\right ) \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )}\right ) \, dx-\frac {2 \int \frac {x}{1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )} \, dx}{e^2}-\int \frac {1}{x \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx\\ &=\frac {x^2}{e^2}+\log (x)+\log \left (3+x^2\right )-\frac {2 \int \frac {x}{1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )} \, dx}{e^2}+\int \frac {1}{\left (i \sqrt {3}-x\right ) \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx-\int \frac {1}{x \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx-\int \frac {1}{\left (i \sqrt {3}+x\right ) \left (1+2 e^{1+\frac {x^2}{e^2}} x \left (3+x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 36, normalized size = 1.50 \begin {gather*} \frac {\frac {x^2}{e}+e \log \left (e^{-\frac {x^2}{e^2}}+6 e x+2 e x^3\right )}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 43, normalized size = 1.79 \begin {gather*} \log \left (x^{2} + 3\right ) + \log \left (\frac {2 \, {\left (x^{2} + 3\right )} e^{\left ({\left (x^{2} + e^{2} \log \relax (x) + 6 \, e^{2}\right )} e^{\left (-2\right )}\right )} + e^{5}}{x^{2} + 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, x^{4} + 6 \, x^{2} + 3 \, {\left (x^{2} + 1\right )} e^{2}\right )} e^{\left ({\left (x^{2} + e^{2} \log \relax (x) + 4 \, e^{2}\right )} e^{\left (-2\right )}\right )}}{x e^{5} + 2 \, {\left (x^{3} + 3 \, x\right )} e^{\left ({\left (x^{2} + e^{2} \log \relax (x) + 4 \, e^{2}\right )} e^{\left (-2\right )} + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 48, normalized size = 2.00
method | result | size |
risch | \(\ln \left (x^{3}+3 x \right )-{\mathrm e}^{2} \ln \relax (x ) {\mathrm e}^{-2}-4 \,{\mathrm e}^{2} {\mathrm e}^{-2}+\ln \left (x \,{\mathrm e}^{{\mathrm e}^{-2} x^{2}+4}+\frac {{\mathrm e}^{3}}{2 x^{2}+6}\right )\) | \(48\) |
norman | \(\ln \left (2 \,{\mathrm e}^{\left ({\mathrm e}^{2} \ln \relax (x )+4 \,{\mathrm e}^{2}+x^{2}\right ) {\mathrm e}^{-2}} x^{2}+{\mathrm e}^{3}+6 \,{\mathrm e}^{\left ({\mathrm e}^{2} \ln \relax (x )+4 \,{\mathrm e}^{2}+x^{2}\right ) {\mathrm e}^{-2}}\right )\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 49, normalized size = 2.04 \begin {gather*} \log \left (x^{2} + 3\right ) + \log \relax (x) + \log \left (\frac {2 \, {\left (x^{3} e + 3 \, x e\right )} e^{\left (x^{2} e^{\left (-2\right )}\right )} + 1}{2 \, {\left (x^{3} e + 3 \, x e\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.00, size = 30, normalized size = 1.25 \begin {gather*} \ln \left ({\mathrm {e}}^3+6\,x\,{\mathrm {e}}^{{\mathrm {e}}^{-2}\,x^2+4}+2\,x^3\,{\mathrm {e}}^{{\mathrm {e}}^{-2}\,x^2+4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 37, normalized size = 1.54 \begin {gather*} \log {\left (x^{2} + 3 \right )} + \log {\left (e^{\frac {x^{2} + e^{2} \log {\relax (x )} + 4 e^{2}}{e^{2}}} + \frac {e^{3}}{2 x^{2} + 6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________